

WYDE Authorization
Guide

(version 2.3)

 WYDE Authorization Guide 2

Disclaimer
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN
THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL
ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL
RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE
ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET
THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY
THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR WYDE VOICE REPRESENTATIVE
FOR A COPY.

IN NO EVENT SHALL WYDE VOICE OR ITS SUPPLIERS BE LIABLE FOR ANY
INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES,
INCLUDING, WITHOUT LIMITATION LOST PROFITS OR LOSS OR DAMAGE TO
DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN
IF WYDE OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Copyright
Except where expressly stated otherwise, the Product is protected by copyright and other
laws respecting proprietary rights. Unauthorized reproduction, transfer, and or use can be a
criminal, as well as civil, offense under the applicable law.

WYDE Voice and the WYDE Voice logo are registered trademarks of WYDE Voice LLC
in the United States of America and other jurisdictions. Unless otherwise provided in this
Documentation, marks identified with “R” / ®, “TM” / ™ and “SM” are registered marks;
trademarks are the property of their respective owners.

For the most current versions of documentation, go to the WYDE support Web site:
http://docs.wydevoice.com/

January 27, 2011

http://docs.wydevoice.com/

 WYDE Authorization Guide 3

Symbols and Notations in this Manual

The following notations and symbols can be found in this manual.

Denotes any item that requires special attention or care. Damage to the
equipment or the operator may result from failure to take note of the noted
instructions

Figure Denotes any illustration

Table Denotes any table

Text Denotes any text output

Folder/File Denotes any folders (paths) or files names

commands Denotes any commands, attributes and parameters

 WYDE Authorization Guide 4

Table of Contents
Symbols and Notations in this Manual... 3
Table of Contents ... 4

Tables List .. 6
Figures List ... 7

Chapter 1: Introduction... 8
Section 1.1: Authorization Overview ... 8
Section 1.2: Assumed Skills ... 8
Section 1.3: Architecture Overview ... 8
Section 1.4: Integration Adapters ... 8

Chapter 2: Authorization .. 10
Section 2.1: Standard Authorization Adapters and Methods ... 10
Section 2.2: Authorization Integration ... 12
Section 2.3: Custom Authorization Adapters and Methods ... 12
Section 2.4: WYDE Commands to Manage Authorization Adapters and Methods 13

Add an Authorization Adapter ... 13
Delete an Authorization Adapter.. 14
View Authorization Adapters... 14
Add an Authorization Method.. 15
Delete an Authorization Method .. 16
Modify an Authorization Method... 16
View Authorization Methods ... 17

Chapter 3: Samples of Authorization Adapters for LDAP and Radius................................ 19
Section 3.1: Sample of Authorization Adapter for LDAP.. 19

Sample of Active Directory Installation and Configuration on the Bridge.................. 20
Sample of WYDE Bridge Configuration for LDAP Authorization 21

Section 3.2: Sample of Simple Authorization Adapter for Radius................................... 21
Radius Server Installation and Configuration Sample ... 22
Sample of Database Access Configuration for Conference Authorization 23
Sample of WYDE Bridge Configuration for Radius Authorization............................. 25

Section 3.3: Sample of Authorization Adapter for Radius with Conferences Call Flow
Attributes .. 25

Sample of Database Access Configuration for Conference Call Flow Attributes
Definition.. 26
Sample of WYDE Bridge Configuration for Radius Authorization............................. 26

Chapter 4: wyde Authorization Command Reference ... 28
auth-adapter-add (Add auth Adapter) ... 28
auth-adapter-del (Delete auth Adapter).. 28
auth-adapter-show (Show auth Adapters) ... 28
auth-method-add (Add auth Method) .. 28
auth-method-del (Delete auth Method) .. 28
auth-method-set (Set auth Method).. 28
auth-method-show (Show auth Methods).. 29
auth-reload (Reload auth configuration) .. 29

Appendix A: Authorization Adapters Code Samples... 30

 WYDE Authorization Guide 5

Sample of Authorization Adapter for Windows Active Directory (WinLdap) 30
Sample of Authorization Adapter for WYDE Radius (WYDERadius) 33

Appendix B: Definitions, Acronyms and Abbreviations.. 37
Appendix C: Support Resources .. 40

Support Documentation.. 40
Web Support ... 40
Telephone Support.. 40
Email Support ... 40

 WYDE Authorization Guide 6

Tables List
Table 1: Active Directory Conference Accounts Data... 20

 WYDE Authorization Guide 7

Figures List
Figure 1: WYDE Bridge Authorization via RADIUS Server .. 11
Figure 2: wyde help auth-adapter-add and wyde auth-adapter-add Commands Output
Sample .. 14
Figure 3: wyde auth-adapter-show Command Output Sample .. 15
Figure 4: wyde help auth-method-add and wyde auth-method-add Commands Output
Sample .. 16
Figure 5: wyde help auth-method-set and wyde auth-method-set Commands Output Sample
.. 17
Figure 6: wyde auth-method-show Command Output Sample... 18
Figure 7: Active Directory Conference Accounts and Conference Numbers Data.............. 19

 WYDE Authorization Guide 8

Chapter 1: Introduction
This is the Authorization guide for the WYDE conferencing bridges (like SB-HD100, SB-
HD1000, and SB-HD10000). Within this guide you will learn how to integrate WYDE
bridge conferences authorization into your security system, i.e. how to verify the right to
connect to the conference and specific role (host/moderator/listener) in the conference
based on your organization security storage.

Section 1.1: Authorization Overview
Formally, "to authorize" is to define access policy, i.e. the right to connect to the
conference and specific role (host/moderator/listener) in the conference. This could be done
either based on the standard WYDE bridge conference authorization features as well as
using your own security infrastructure.

If you have your own security infrastructure the customized authorization adapter can be
written to integrate your security into call flows authorization. This guide explains how to
create custom authorization adapters and methods for these purposes.

Section 1.2: Assumed Skills
This authorization guide assumes you have a working knowledge of the following
technologies and skills:
x PC usage
x System administration
x Linux/CentOS basics
x VOIP basics
x TCP/IP networking
x Command Line Administration Interface - User Guide (recommended)
x Web Administration Interface – User Guide (recommended)

Section 1.3: Architecture Overview
The WYDE architecture is made up of both hardware as well as software services that work
together to provide the best carrier-class, wideband conferencing available.

WYDE services is not only turnkey software solution, it is the component that can be easily
integrated into other products. The WYDE Bridge can be controlled either using web
services or using real-time interface. Web services send requests to the bridge and receive
information about status of the bridge. The real time interface makes call to the bridge
using special client, perform SIP call to send and receive commands and exchange
information about the conferences.

Section 1.4: Integration Adapters
WYDE can be integrated into an enterprise infrastructure through the set of adapters. There
are three points of integration:
x Billing service – For billing purposes the WYDE bridge software can store and

transmit CDRs (Call Detail Records), the CDR storage is the storage location for the

 WYDE Authorization Guide 9

individual call records. You can store this information into SQL database or use other
data storage.

x Authorization service – This allows the WYDE software to integrate into the
enterprise authorization systems. This could be a SQL database, RADIUS, LDAP, or
other.

x Call/Conference management – This is the ability to manage conference calls,
exposed through the Web API for integration with enterprise web sites.

This document is devoted to authorization process only. It explains how to develop your
own authorization adapters to perform conference authorization and how to configure
authorization methods. If you need additional documentation regarding to “WYDE
Command Line Administration Interface” or “WYDE Web Administration Interface” please
download it from the WYDE Voice documentation Web site as noted in Appendix C:
Support Resources, Support Documentation section.

 WYDE Authorization Guide 10

Chapter 2: Authorization
As it was previously mentioned the conference authorization can be made either based on
the standard WYDE bridge software conference authorization features or the right to join to
the conference and specific role (host/moderator/listener) in the conference could be
defined based on your own security infrastructure using customized authorization adapter
written to integrate your security into call flows authorization.

WYDE bridge authorization is being formed from Authorization Adapters and
Authorization Methods.

In terms of WYDE bridge software the Authorization Adapter is the component (function)
responsible for specifying access rights in the conferences. More formally, "to authorize" is
to define access policy, i.e. the right to connect to the conference and specific role
(host/moderator/listener) in the conference.

In terms of WYDE bridge software the Authorization Method is the specific authorization
adapters together with its parameters (if necessary) that are used to authorize in the
conference by specific call flow or DNIS. The authorization methods are being used for the
conference authorization configuration. The authorization method could be defined either
on call flow level or on DNIS level.

Section 2.1: Standard Authorization Adapters and Methods
The following three predefined authorization adapters are included and supported by
standard WYDE bridge software installation:
o LocalDb – authorization via local database, when the person is called to the conference

DNIS number, he is being asked to enter the access code, this access code is being
verified in local database (dnca) according to subscribers’ conference accounts
definitions, user roles in the conference (i.e. host, participant, listener roles) are being
granted depending on DNIS numbers and access codes used,
9 usually used for SPECTEL call flow;

o WYDERadius – authorization via RADIUS server using WYDE dictionary;
9 Remote Authentication Dial In User Service (RADIUS) is a networking protocol that

provides centralized Authentication, Authorization, and Accounting management for
computers to connect and use a network service. RADIUS is a client/server protocol that
runs in the application layer, using UDP as transport. The Remote Access Server, the
Virtual Private Network server, the Network switch with port-based authentication, and the
Network Access Server, are all gateways that control access to the network, and all have a
RADIUS client component that communicates with the RADIUS server. The RADIUS
server is usually a background process running on a UNIX or Windows NT machine.
RADIUS serves three functions: to authenticate users or devices before granting them
access to a network, to authorize those users or devices for certain network services and to
account for usage of those services.

In our case the RADIUS server receives DNIS (DID) number/access code as
login/password and returns the conference number and the user roles in the returned
conference as the result of authorization if it is successful; so WYDE RADIUS should
contain confuser class (table) definition with the fields: did_number, accesscode,

 WYDE Authorization Guide 11

conf_number, role that are used to perform authorization of callers in conferences.
WYDE bridge authorization using RADIUS server is shown on Figure 1; in its work
first the authorization adapter sends request to the database by means of Radius server
and next it receives response from the database via Radius server as well.

Figure 1: WYDE Bridge Authorization via RADIUS Server

o WYDELdap – authorization via LDAP using WYDE dictionary;
9 Lightweight Directory Access Protocol, or LDAP, is an application protocol for querying

and modifying data using directory services running over TCP/IP. A directory is a set of
objects with attributes organized in a logical and hierarchical manner. LDAP deployments
today tend to use Domain Name System (DNS) names for structuring the topmost levels of
the hierarchy. Deeper inside the directory might appear entries representing people,
organizational units, printers, documents, groups of people or anything else that represents
a given tree entry (or multiple entries).

The following dictionary (schema) is being used for WYDE LDAP:
o object class confUser (conference user entry), that contains mandatory attributes

didNumber, accesscode, role, confNumber;
o object class confInfo (conference info entry), that contains mandatory attribute

confNumber and optional attributes callExitDTMF, callInstructionsDTMF,
callParticipantsnumberDTMF, callMuteDTMF, callAssociateDTMF,
callOperatorDTMF, conferenceMuteDTMF, conferenceLockDTMF,
conferenceQADTMF, conferenceBroadcastDTMF,
conferenceEntryexittonesDTMF, conferenceDialoutDTMF, recordingDTMF,
callAnnounceparticipantcount, conferenceEntrytones, conferenceExittones,
conferenceMaxcalls, conferenceMoh, conferenceMuteHost,
conferenceMuteParticipant, conferenceMuteListener, conferenceHoldHost,
conferenceHoldParticipant, conferenceHoldListener, conferenceStartHow,
conferenceStartWait, conferenceStopHow, conferenceStopWait,
conferenceRealtime, conferenceCallerdb, recordingStopHow, recordingStopWait,
callJobcodeonenter, conferenceJobcodeDTMF, conferenceRollcall,
callGainIncDTMF, callGainDecDTMF, conferencePlayFile.

You can populate your data using this LDAP dictionary (hierarchical database) and use
them in your WYDELdap authorization adapter to perform authorization of callers in
conferences.

Of course, if you would like to use your company security infrastructure you can create
your custom authorization adapter that will be responsible for verification if the user has the
right to connect to the conference and what specific role should be granted to the user in the
conference. This approach will be described in next sections of this guide.

 WYDE Authorization Guide 12

There are three predefined standard authorization methods:
x local – Authorization via local database, LocalDb authorization adapter used;
x wydeldap – Authorization via LDAP, WYDELdap authorization adapter used;
x wyderadius – Authorization via LDAP using WYDE dictionary, WYDERadius

authorization adapter used.
They are included and supported by standard WYDE bridge software installation.

The authorization method name should be selected in dnis_authorizemethod
(Authorize method) call flow attribute value either on call flow or on DNIS level.

Section 2.2: Authorization Integration
Conference authorization, i.e. defining the right to connect to the conference and specific
role (host/moderator/listener) in the conference, can be made in one of the following ways:
1. You can do not use authorization, i.e. anyone who called to the conference DNIS

number is allowed to connect to the conference regardless of access code entered.
Usually this approach is used in CONF call flow.

2. Authorization can be made via local database, when the person is called to the
conference DNIS number, he is being asked to enter the access code, this access code is
being verified in local dnca database according to subscribers’ conference accounts
definitions, user roles in the conference (i.e. host, participant, listener roles) are being
granted depending on DNIS numbers and access codes used. Usually this approach is
used in SPECTEL call flow.

3. Authorization can be made via RADIUS server using WYDE dictionary by means of
WYDERadius standard authorization adapter as it was previously described.

4. Authorization can be made via LDAP using WYDE dictionary by means of WYDELdap
standard authorization adapter as it was previously described.

5. Custom authorization adapter can be written to determine can or can not the user
connect to the conference and if the connection is allowed what role should be granted
to the user, i.e. should the user be host or participant or listener. Usual this information
can be received either from your external SQL database (for instance using RADIUS
server) or from Active Directory Domain Controller or others.

Section 2.3: Custom Authorization Adapters and Methods
As it was previously told in terms of WYDE bridge software the Authorization Adapter is
the component (function) responsible for specifying access rights in the conferences. More
formally, "to authorize" is to define access policy, i.e. the right to connect to the conference
and specific role (host/moderator/listener) in the conference.

Actually all authorization adapters are routines written in Perl that perform authorization
using specific protocols. These routines are placed in the /usr/local/DNCA/lib/Auth/Adapter
folder that should contain the files <Adapter Name>.pm that means that this folder on your
bridge contains the following files: LocalDb.pm, WYDERadius.pm, WYDELdap.pm – the
authorization adapters supported by your bridge.

 WYDE Authorization Guide 13

In addition to standard LocalDb, WYDERadius, and WYDELdap authorization adapters
described in previous sections of this guide you can create your own authorization adapters
that will perform conference authorization according to security infrastructure of your
organization. So the customized authorization adapter can be written to integrate your
security into call flows authorization.

As it was previously mentioned for authorization in the conferences are being used
authorization methods. Authorization methods determines the specific authorization adapter
and if necessary its parameters that are used to perform authorization. The authorization
method name should be selected in dnis_authorizemethod (Authorize method) call
flow attribute value either on call flow or on DNIS level.

If you made any changes in authorization adapters or authorization methods you should run
the wyde command line utility with the auth-reload option:
wyde auth-reload

Section 2.4: WYDE Commands to Manage Authorization Adapters and
Methods
Authorization adapters and methods can be managed using wyde command with different
options that will be listed and described below. The command line interface is the powerful
tool to administer your authorization adapters and authorization methods.

Add an Authorization Adapter
Before you add new authorization adapter, you should create the <Adapter Name>.pm file
in the /usr/local/DNCA/lib/Auth/Adapter folder for this adapter as it was described above.

To add new authorization adapter registration using the command line interface you should
use the wyde command line utility with the auth-adapter-add option. The syntax is as
follows:
wyde auth-adapter-add <arguments>
Each of the arguments is followed by a space and a value. In auth-adapter-add you can
specify the following arguments:
x name <value> – The name of the authorization adapter that should be added. This is

required argument. This name should be unique, i.e. there should no be any other
authorization adapter with the same name on the bridge.

x description <value> – The optional description of the authorization adapter that
should be added.

The arguments can be transferred to this command in any order.

Let’s assume that we have created the file WYDELdap.pm in the folder
/usr/local/DNCA/lib/Auth/Adapter for new authorization adapter WYDELdap. To add this
adapter to the bridge you should use the command:
wyde auth-adapter-add name WYDELdap

description "authorization via WYDE LDAP"

 WYDE Authorization Guide 14

If the command is successful, the system will not return any errors or messages; it will just
return you back to the command prompt (#). The sample of the auth-adapter-add command
output and the help on this command is shown on Figure 2.

Figure 2: wyde help auth-adapter-add and wyde auth-adapter-add Commands Output Sample

Delete an Authorization Adapter
To delete an authorization adapter using the wyde command line utility you should use
auth-adapter-del option. The syntax is as follows:
wyde auth-adapter-del name <authorization adapter name>
where
x <authorization adapter name> – the name of the authorization adapter you

wish to delete.
Note that you can delete only authorization adapters that are not in use, i.e. there should no
be any authorization methods that refer to this authorization adapter. If the authorization
adapter is used by any authorization method you will receive the error and the deletion will
be cancelled.

For example to delete authorization adapter VSRRadius you should run the command:
wyde auth-adapter-del name VSRRadius

If deletion is successful, you will be returned to the command line with no additional
prompts.

View Authorization Adapters
To show a list of all authorization adapters in the system using the command line, you
should use the wyde command line utility with the auth-adapter-show option. The syntax is
as follows:
wyde auth-adapter-show

This command will output a list of the all existed authorization adapters on the system,
similar to shown on Figure 3. As you can see, the wyde auth-adapter-show command
shows the authorization adapters that have been created in the system as well as their basic
properties: authorization adapter name and description.

 WYDE Authorization Guide 15

Figure 3: wyde auth-adapter-show Command Output Sample

Add an Authorization Method
To create new authorization method for the authorization adapter using the command line
interface you should use the wyde command line utility with the auth-method-add option.
The syntax is as follows:
wyde auth-method-add <arguments>
Each of the arguments is followed by a space and a value. In auth-method-add you can
specify the following arguments:
x name <value> – The name of the authorization method that should be added.
x description <value> – The description of the authorization method that should

be added.
x adapter <value> – The authorization adapter name for the authorization method

that should be added.
x parameters <value> – The list of parameters for the authorization method that

should be added. The parameters are specific for authorization adapters that are being
used: Free and LocalDb authorization adapters do not require any parameters; for
WYDELdap it is the string that defines the list of LDAP servers separated by semicolon
(;), and each of these servers is defined as
<server IP>:[<server port>]:<password>:<LDAP root DN path>
(default port is 389, DN path means distinguished name of the LDAP folder that
contains conference authorization info); for WYDERadius it is the string that defines the
list of RADIUS servers separated by semicolon (;), and each of these servers is defined
as <password>@<server IP>[:<server port>] (default port is 1812).

Arguments name and adapter are required. The arguments can be transferred to this
command in any order.

For example if you would like to create the authorization method wydeldap for the
authorization adapter WYDELdap with description “Authorization via WYDE LDAP –
sample” and parameters “localhost::test:dc=wydevoice,dc=com” you should run the
following command (new authorization method properties are shown in italic):
wyde auth-method-add name wydeldap adapter WYDELdap

description "Authorization via WYDE LDAP - sample"
parameters "localhost::test:dc=wydevoice,dc=com"

Note that to set the description that contains spaces and parameters you should use double
quotes (").

 WYDE Authorization Guide 16

If the command is successful, the system will not return any errors or messages; it will just
return you back to the command prompt (#). The sample of the auth-method-add command
output and the help on this command is shown on Figure 4.

Figure 4: wyde help auth-method-add and wyde auth-method-add Commands Output Sample

Delete an Authorization Method
If you wish to delete the specific authorization method, you can use the wyde command line
utility with auth-method-del option. The syntax is as follows:
wyde auth-method-del name <authorization method name>
where
x <authorization method name> – The name of the authorization method that

should deleted. This argument is required.
Note that you can delete only authorization methods that are not in use. If the method is
used by any call flow and/or DNIS you will receive the error: “<authorization method
name>: Authorization method is in use and can not be removed.”.

For example to delete the authorization method vsrradius you should run the command:
wyde auth-method-del name vsrradius

If deletion is successful, you will be returned to the command line with no additional
prompts.

Modify an Authorization Method
To modify authorization method properties, such as description and parameters, using the
command line interface you should use the wyde command line utility with the auth-
method-set option. The syntax is as follows:
wyde auth-method-set <arguments>
Each of the arguments is followed by a space and a value. In auth-method-set you can
specify the following arguments:
x name <value> – The name of the authorization method that should be changed.
x description <value> – New description of the authorization method that should

be set.

 WYDE Authorization Guide 17

x parameters <value> – New list of parameters for the authorization method that
should be set.

The argument name is required; you should specify arguments description and
parameters only if you would like to change them. The arguments can be transferred to
this command in any order.

For example if you would like to change wyderadius authorization method and set its
description equal to “Authorization via WYDE RADIUS server - sample” and it parameters
equal to “test@192.168.1.41:1812”, you should run the following command (the
transferred command arguments are shown in italic):
wyde auth-method-set name wyderadius

description "Authorization via WYDE RADIUS server - sample"
parameters "test@192.168.1.41:1812"

If the command is successful, the system will not return any errors or messages; it will just
return you back to the command prompt (#). The sample of the auth-method-set command
output and the help on this command is shown on Figure 5.

Figure 5: wyde help auth-method-set and wyde auth-method-set Commands Output Sample

View Authorization Methods
To show a list of all authorization methods in the system using the command line, you
should use the wyde command line utility with the auth-method-show option. The syntax is
as follows:
wyde auth-method-show

This command will output a list of the all existed authorization methods on the system,
similar to shown on Figure 6. As you can see, the wyde auth-method-show command shows
the authorization methods that have been created in the system as well as their basic
properties: authorization method name, adapter, parameters, and description.

 WYDE Authorization Guide 18

Figure 6: wyde auth-method-show Command Output Sample

 WYDE Authorization Guide 19

Chapter 3: Samples of Authorization Adapters for LDAP and
Radius
As it was previously told, you can write your own authorization adapters when it is
necessary. Custom authorization adapters are routines written in Perl that perform calls
authorization using specific protocols.

Each authorization adapter should have method new that performs class initialization, for
instance access protocol initialization, database initialization, socket initialization, etc. In
addition each authorization adapter should have such public methods as
get_confuser_by_accesscode, get_confuser_by_number, get_conference_attributes, that are
used for actual calls authorization in the conferences based on DNIS number, access code,
conference number, etc.

Section 3.1: Sample of Authorization Adapter for LDAP
Let’s review the following scenario:
x you have Windows Active Directory Domain Controller, i.e. server computer (for

example with Windows 2003 or Windows 2008) with Active Directory Domain
Services installed;

x your Active Directory contains information about your conference accounts: conference
number, DNIS number, access code and used roles, as well as your conferences
definitions, as shown on Figure 7;

Figure 7: Active Directory Conference Accounts and Conference Numbers Data

x your domain address is wydevoice.com; the information is being stored under

Configuration folder; to subfolders created: confUser for conference accounts
information and confNumber for conferences information; the object class that is used:
controlAccessRight;

x for this sample purposes we assume that the single conference with conference number
120 is defined, two conference accounts with DNIS number 12 are being created for
this conference: for the Host role with access code 1210 and for the Participant role
with access code 1211; these data are being stored in Active Directory as shown in
Table 1;

 WYDE Authorization Guide 20

Table 1: Active Directory Conference Accounts Data
cn conference

accounts
attributes

host120 participant120

displayName confUser
(12,host)

confUser (12,part)

adminDescription accesscode 1210 1211
adminDisplayName role Host Participant
description did_number 12 12
uSNSource conf_number 120 120

x we need to create and configure the authorization adapter that will read this conference

accounts information from Windows Active Directory and perform conference
authorization based on these data.

Click here to see sample of the authorization adapter WinLdap source code that we
developed to implement this request.

Sample of Active Directory Installation and Configuration on the Bridge
Note that to work with Active Directory from your bridge computer the following RPM
packages should be installed: cyrus-sasl, krb5-libs, krb5-workstation, perl-Authen-Cyrus,
perl-Authen-Krb5, perl-Authen-SASL.
To use Kerberos you should configure it by editing /etc/krb5.conf configuration files, in
this file you should write down the information about you Active Directory Domain
Controller, in our sample:
[realms]
 WYDEVOICE.COM = {
 kdc = 192.168.1.19:88
 admin_server = 192.168.1.19:749
 default_domain = wydevoice.com
 }

[domain_realm]
 .wydevoice.com = WYDEVOICE.COM
 wydevoice.com = WYDEVOICE.COM
In addition you should configure and use kinit program from Kerberos tool to perform
authorization to Active Directory computer; it is used to obtain and cache Kerberos ticket-
granting tickets; this program asks to enter your user name and password to Active
Directory computer and bridge receives the ticket that is valid for 24 hours by default; you
should configure kinit execution to have the valid ticket to your Active Directory computer
if your authorization adapter uses these data.

In the authorization adapter code authentication and binding to your Active Directory
computer is being made in sub new method:
my $sasl = Authen::SASL->new(mechanism => 'GSSAPI');
$self->{CLIENT} = new Net::LDAP($server->{host}, port => $server->{port},
 onerror => 'die', debug => 0);

 WYDE Authorization Guide 21

$self->{CLIENT}->bind(sasl => $sasl);
When user connects to the conference, the search within LDAP (Active Directory) data is
being made based on DNIS number and access entered, for instance using the filter:
my $filter = "&(objectClass=controlAccessRight)(description=$did_number)

(adminDescription=$accesscode)";
and conference account data are being returned if the search was successful.

Sample of WYDE Bridge Configuration for LDAP Authorization
When design of WinLdap.pm file is completed you should copy this file into
/usr/local/DNCA/lib/Auth/Adapter folder and then you should use the wyde command line
utility with auth-reload option. The syntax is as follows:
wyde auth-reload
This command also should be run if you made any changes in your authorization adapter
file.

Next you can add authorization adapter and authorization method using the following
commands:
wyde auth-adapter-add name WinLdap

description "authorization via Windows LDAP"
wyde auth-method-add name winldap adapter WinLdap

description "Authorization via Windows LDAP - sample"
parameters
"192.168.1.19:::CN=wydeUsers,CN=Configuration,dc=wydevoic
e,dc=com"

Note that after you add the authorization adapter you also should use the wyde command
line utility with auth-reload option:
wyde auth-reload

After that you should change dnis_authorizemethod (Authorize method) call flow
attribute value for your DNIS 12 (as it is described in our scenario) and set it equal
winldap.

As soon as this has been made all calls to this DNIS number will be authorized using the
authorization adapter that we developed, i.e. the authorization will be made using Windows
Active Directory data.

Section 3.2: Sample of Simple Authorization Adapter for Radius
Let’s review another scenario:
x assume that we have Windows PostgreSQL database users and its Accounts table

contains information about account conferences, i.e. conference numbers, DNIS
numbers, access codes, and user roles in the conferences, the structure of this table is
the following:
CREATE TABLE "Accounts"
(
 "AccountID" serial NOT NULL,
 "DNIS" text,
 "Role" text,
 "AccessCode" text,

 WYDE Authorization Guide 22

 "ConferenceNumber" text,
 "CreateDate" timestamp without time zone DEFAULT now(),
 CONSTRAINT "PrimaryKey_ Accounts" PRIMARY KEY ("AccountID")
)
WITH (
 OIDS=FALSE
);
and the contents of this table is the following:
AccountID DNIS Role AccessCode ConferenceNumber
1 8665080012 Host 8001 880088
2 8665080012 Participant 8002 880088

In our sample PostgreSQL Windows computer IP address is 192.168.1.99, database
user name is WydeAuthAdapter, user password is 123;

x assume that we should use the Radius server to access the data from this database; this
Radius server could be installed on any computer but for the purpose of this sample we
assume that it is installed on the same computer with your WYDE bridge;

x we need to perform conference authorization using the Radius server and configure the
WYDE bridge and the Radius server to read the conference accounts information from
the described database using the Radius authorization server; the standard WYDERadius
authorization adapter should be used to implement this request.

Radius Server Installation and Configuration Sample
To implement this scenario first you should install the Radius server (freeradius) and
adapter to work with PostgreSQL (freeradius-postgresql) on your bridge computer using
the following command:
yum install freeradius freeradius-postgresql
This command installs two RPM packages that are necessary to use authorization via
Radius using PostgreSQL database.

Your WYDE bridge computer contains /usr/local/DNCA/lib/Auth/Radius folder; this folder
contains the files that would be necessary to implement this request and few samples
regarding to the Radius authorization:
x dictionary.wyde – WYDE dictionary file, this file should be copied into /etc/raddb

folder;
x wyde_sql.conf.sample, wyde_sql.conf.sample_fcc2, wyde_sql.conf.sample_fcc2_oracle –

the configuration files samples, that could be used to connect to different databases;
let’s use wyde_sql.conf.sample file as basis of our configuration file, rename it to
wyde_sql.conf and copy it into /etc/raddb folder;

x radiusd.conf.sample – the sample of the main Radius server main configuration file –
you should rename it to radiusd.conf and copy it into /etc/raddb folder.

Next we should update the files from /etc/raddb folder:
x dictionary file should be changed – INCLUDE statement for dictionary.wyde file

should be added to this file as follows:
$INCLUDE dictionary.wyde

x clients.conf file should be changed to define the Radius clients; localhost (127.0.0.1) is
enabled by default:

 WYDE Authorization Guide 23

client 127.0.0.1 {
 secret = testing123
 ...
}
this configuration defines that the access to the Radius server could be made from this
computer using the password testing123; because we have installed the Radius server
on the same computer with our WYDE bridge and we are going to use it from the same
computer, it is enough to have this configuration;

x you can use radiusd.conf main configuration file of the Radius server without additional
changes if you copied it as described above, draw attention to the sections modules,
authorize, authenticate:
Module Configuration.
modules {
 # DEFAULT: crypt
 pap {
 encryption_scheme = crypt
 }
 $INCLUDE ${confdir}/wyde_sql.conf

 always fail {
 rcode = fail
 }
 always reject {
 rcode = reject
 }
 always ok {
 rcode = ok
 simulcount = 0
 mpp = no
 }
}
Authorization.
authorize {
 wyde_confuser
}
Authentication.
authenticate {
 Auth-Type PAP {
 pap
 }
}

Sample of Database Access Configuration for Conference Authorization
After that to provide access to specific data from the database we should update the
wyde_sql.conf configuration file from /etc/raddb folder:
x this file should be changed to reflect the PostgreSQL server (IP address, user name and

password, database name) and your specific data structure:
sql wyde_confuser {
 driver = "rlm_sql_postgresql"
 server = "192.168.1.99"
 login = "WydeAuthAdapter"
 password = "123"
 radius_db = "users"

 # Remove stale session if checkrad does not see a double login
 deletestalesessions = yes
 # Print all SQL statements when in debug mode (-x)
 sqltrace = yes
 sqltracefile = ${logdir}/sqltrace.sql
 # number of sql connections to make to server
 num_sql_socks = 5

 WYDE Authorization Guide 24

 authorize_check_query = "SELECT 0 as id, \"AccessCode\" as UserName, \
 'User-Password' as Attribute, \"DNIS\" as Value, '==' as Op \
 FROM \"Accounts\" WHERE \"AccessCode\" = '%{User-Name}' ORDER BY id "

 authorize_reply_query = "SELECT 0 as id, \"AccessCode\" as UserName, \
 'conf_number' as Attribute, \"ConferenceNumber\" as Value, '=' as Op \
 FROM \"Accounts\" \
 WHERE \"AccessCode\" = '%{User-Name}' \
 UNION \
 SELECT 1 as id, \"AccessCode\" as UserName, \
 'role' as Attribute, \"Role\" as Value, '=' as Op \
 FROM \"Accounts\" \
 WHERE \"AccessCode\" = '%{User-Name}' \
 ORDER BY id "
}

In this configuration file driver determines which driver is used to connect to the
database (in our sample “rlm_sql_postgresql” is used for PostgreSQL, for MySQL
should be used “rlm_sql_mysql” driver), server determines the IP address of the
server, login / password – credentials that should be used to access the data,
radius_db – the name of the database;
When Radius server implements the requests this configuration file receives two
variables: %{User-Name} variable is equal to the access code entered by the caller and
%{User-Password} variable is equal to the DNIS number the caller called (for example
if user called to the DNIS number 8665080012 and entered the access code 8001,
%{User-Name} variable would be equal to 8001 and %{User-Password} variable
would be equal to 8665080012);
Two queries should be defined in this configuration file:
o authorize_check_query – for the performed call if the access code is valid and

authorization is successful this check-authorization query should return the single
row with the following columns: id, UserName (access code used), Attribute
(‘User-Password’ string), Value (DNIS number called), Op (‘==’ string):
id UserName Attribute Value Op
0 8001 User-Password 8665080012 ==

o authorize_reply_query – for the performed call if the access code is valid and
authorization is successful this query should return two rows with the same fields,
but different data: the first row with information about the conference number
(UserName equals to access code used, Attribute equals to ‘conf_number’ string,
Value equals to 880088 in our case, Op equals to ‘=’ string) and the second row
with information about the caller role in the conference (UserName equals to access
code used, Attribute equals to ‘role’ string, Value equals to ‘Host’ string if access
code equal to 8001 or ‘Participant’ string if access code equal to 8002, Op equals to
‘=’ string):
id UserName Attribute Value Op
0 8001 conf_number 880088 =
1 8001 role Host =

these data are being transferred to authorization adapter in the form “the attribute
equals the value”, i.e. in our case conf_number=880088 and role=Host.

Note that as authorize_reply_query and authorize_reply_query you can also use the
stored procedures with parameters that return the same data as described above.

 WYDE Authorization Guide 25

Sample of WYDE Bridge Configuration for Radius Authorization
As soon as you completed the Radius server configuration you should start its service using
the command:
service radiusd start

Click here to see sample of the authorization adapter WYDERadius source code.

If you performed all steps as described above you do not need to make any changes in this
adapter and the standard WYDERadius authorization adapter can be used for this Radius
authorization.

Note that if you made any changes in your authorization adapter the following command
should be run:
wyde auth-reload

This WYDERadius adapter already exists in your WYDE bridge. You can see it using the
command:
wyde auth-adapter-show
But you need to update authorization method wyderadius that is working with this
authorization adapter using the command:
wyde auth-method-set name wyderadius

parameters testing123@localhost
Here testing123 – the password to your Radius server that you described in the clients.conf
file in the parameter secret; localhost – denotes that your Radius server is installed on the
same computer with your WYDE bridge.

After that you should change dnis_authorizemethod (Authorize method) call flow
attribute value either on call flow level or on DNIS level and set it equal wyderadius.

As soon as this has been made all calls to the updated DNIS or call flow will be authorized
using the WYDERadius authorization adapter, i.e. the authorization will be made using the
Radius server according to your users database Accounts table.

Section 3.3: Sample of Authorization Adapter for Radius with Conferences
Call Flow Attributes
Let’s review another similar scenario:
x assume that in addition to previously described data the same Windows PostgreSQL

users database contains Conferences table with call flow attributes defined for the
specific conferences, i.e. this table contains conference numbers, call flow attributes
names and values, the structure of this table is the following:
CREATE TABLE "Conferences"
(
 "ConferenceID" serial NOT NULL,
 "ConferenceNumber" text,
 "CallFlowAttributeName" text,
 "CallFlowAttributeValue" text,
 "CreateDate" timestamp without time zone DEFAULT now(),

 WYDE Authorization Guide 26

 CONSTRAINT "PrimaryKey_Conferences" PRIMARY KEY ("ConferenceID")
)
WITH (
 OIDS=FALSE
);
and the contents of this table is the following:
ConferenceID ConferenceNumber CallFlowAttributeName CallFlowAttributeValue
1 880088 conference_entrytones off
2 880088 conference_exittones off
3 880088 call_instructions_dtmf h

Sample of Database Access Configuration for Conference Call Flow Attributes
Definition
To use these new data all previously made settings stay the same, you should only update
wyde_sql.conf configuration file from /etc/raddb folder:
x this file should be changed to use your Conferences table data as call flow attributes for

the specific conferences; you should add to the end of sql wyde_confuser settings code
the definition of authorize_group_reply_query parameter:
sql wyde_confuser {

 authorize_group_reply_query = "SELECT \"ConferenceID\" as id, \
 \"Conferences\".\"ConferenceNumber\" as GroupName, \
 \"CallFlowAttributeName\" as Attribute, \
 \"CallFlowAttributeValue\" as Value, '=' as Op \
 FROM \"Conferences\" INNER JOIN \"Accounts\" ON \
 \"Conferences\".\"ConferenceNumber\" = \
 \"Accounts\".\"ConferenceNumber\" \
 WHERE \"AccessCode\" = '%{User-Name}' \
 ORDER BY id "
}

As you can see the third query should be defined in this configuration file:
o authorize_group_reply_query – for the performed call if the access code is valid

and authorization is successful this query should return the rows for any call flow
attributes specific for the conference with the following columns: id, GroupName
(the conference number, i.e. 880088 in our case), Attribute (call flow attribute
name), Value (call flow attribute value), Op (‘=’ string):
id GroupName Attribute Value Op
1 880088 conference_entrytones off =
2 880088 conference_exittones off =
3 880088 call_instructions_dtmf h =

Note that as authorize_group_reply_query you can also use the stored procedure with
parameters that return the same data as described above.

Sample of WYDE Bridge Configuration for Radius Authorization
As soon as you changed wyde_sql.conf configuration file you should restart Radius service
using the command:
service radiusd restart

Once this has been done not only all calls to this DNIS/call flow will be authorized using
the WYDERadius authorization adapter, i.e. the authorization will be made using the Radius

 WYDE Authorization Guide 27

server according to your users database Accounts table, but also the conference call flow
attributes will be taken from this database Conferences table.

 WYDE Authorization Guide 28

Chapter 4: wyde Authorization Command Reference

auth-adapter-add (Add auth Adapter)
Syntax:

wyde auth-adapter-add arguments
Arguments:

name <value> – The name of the authorization adapter that should be added (*);
description <value> – The description of the authorization adapter that should

be added.

auth-adapter-del (Delete auth Adapter)
Syntax:

wyde auth-adapter-del arguments
Arguments:

name <value> – The name of the authorization adapter that should deleted (*).

auth-adapter-show (Show auth Adapters)
Syntax:

wyde auth-adapter-show

auth-method-add (Add auth Method)
Syntax:

wyde auth-method-add arguments
Arguments:

name <value> – The name of the authorization method that should be added (*);
description <value> – The description of the authorization method that should

be added;
adapter <value> – The authorization adapter name for the authorization method

that should be added (*);
parameters <value> – The list of parameters for the authorization method that

should be added.

auth-method-del (Delete auth Method)
Syntax:

wyde auth-method-del arguments
Arguments:

name <value> – The name of the authorization method that should deleted (*).

auth-method-set (Set auth Method)
Syntax:

wyde auth-method-set arguments
Arguments:

name <value> – The name of the authorization method that should be changed (*);

 WYDE Authorization Guide 29

description <value> – New description of the authorization method that should
be set;

parameters <value> – New list of parameters for the authorization method that
should be set.

auth-method-show (Show auth Methods)
Syntax:

wyde auth-method-show

auth-reload (Reload auth configuration)
Syntax:

wyde auth-reload

 WYDE Authorization Guide 30

Appendix A: Authorization Adapters Code Samples

Sample of Authorization Adapter for Windows Active Directory (WinLdap)
package Auth::Adapter::WinLdap;

use Misc::Logger;
use Net::LDAP 0.33;
use Authen::SASL 2.10;

my %attr_map = (
 description => 'did_number',
 adminDescription => 'accesscode',
 adminDisplayName => 'role',
 uSNSource => 'conf_number'
);

sub factory {
 return new Auth::Adapter::WinLdap(@_);
}

sub new {
 my $self = {};
 my $class = shift;
 my $object = bless($self, $class);
 my $parameters = shift;

 $logger->debug("Create auth adapter for LDAP: parameters=$parameters");

 my @servers = ();

 foreach my $server_info (split(';', $parameters)) {
 my $server = {};
 ($server->{host}, $server->{port}, $server->{password}, $server->{base}) =
 split(':', _trim($server_info));
 $server->{port} = 389 if ($server->{port} eq '');
 push(@servers, $server);
 }

 $self->{ret_code} = -1;

 foreach my $server (@servers) {
 my $sasl = Authen::SASL->new(mechanism => 'GSSAPI');
 $self->{CLIENT} = new Net::LDAP($server->{host}, port => $server->{port},
 onerror => 'die', debug => 0);
 if (!defined($self->{CLIENT})) {
 $logger->error("Could not contact LDAP server $server->{host}");
 next;
 }

 $self->{CLIENT}->bind(sasl => $sasl);
 $self->{SERVER_BASE} = $server->{base};
 last;
 }

 return $object;
}

sub _trim {
 my $string = shift;
 $string =~ s/^\s+//;
 $string =~ s/\s+$//;
 return $string;
}

sub ldap_search {
 my ($self, $base, $filter) = @_;

 WYDE Authorization Guide 31

 my $reply = undef;

 if (defined($self->{CLIENT})) {
 $logger->debug("LDAP search : base=$base, filter=$filter");
 my $mesg = $self->{CLIENT}->search(base => $base, filter => $filter);

 my @entries = $mesg->entries;
 my $entry = shift(@entries);
 if (defined($entry)) {
 $reply = {};
 my @attrs = $entry->attributes();

 foreach $attr (@attrs) {
 my $key = $attr_map{$attr};
 if ($key ne '') {
 $reply->{$key} = $entry->get_value($attr);
 $logger->debug("$key=$reply->{$key}");
 }
 }
 }

 if (defined($reply)) {
 $self->{ret_code} = 1;
 } else {
 $self->{ret_code} = 0;
 }
 }
 return $reply;
}

#///
public methods
#//
sub get_confuser_by_accesscode {
 my ($self, $did_number, $accesscode) = @_;
 return undef if (!defined($self->{CLIENT}));

 my $base = "$self->{SERVER_BASE}";
 my $filter = "&(objectClass=controlAccessRight)(description=$did_number)(adminDescription=$accesscode)";

 $self->{confuser} = $self->ldap_search($base, $filter);

 if(defined($self->{confuser})) {
 $logger->debug("confuser found via ldap: did_number=$did_number, conf_number=$self-
>{confuser}->{conf_number}, accesscode=$self->{confuser}->{accesscode}, role=$self-
>{confuser}->{role}");
 } else {
 $logger->error("confuser not found via ldap: did_number=$did_number,
accesscode=$accesscode, filter=$filter");
 }

 return $self->{confuser};
}

sub get_confuser_by_number {
 my ($self, $did_number, $conf_number) = @_;
 return undef if (!defined($self->{CLIENT}));

 my $base = "$self->{SERVER_BASE}";
 my $filter = "&(objectClass=controlAccessRight)(description=$did_number)(uSNSource=$conf_number)";

 $self->{confuser} = $self->ldap_search($base, $filter);

 if(defined($self->{confuser})) {
 $logger->debug("confuser found via ldap: did_number=$did_number, conf_number=$self-
>{confuser}->{conf_number}, accesscode=$self->{confuser}->{accesscode}, role=$self-
>{confuser}->{role}");
 } elsif($res != -1) {
 $logger->error("confuser not found via ldap: did_number=$did_number,
conf_number=${conf_number}");

 WYDE Authorization Guide 32

 }

 return $self->{confuser};
}

sub get_conference_attributes {
 my ($self) = @_;
 return undef if (!defined($self->{CLIENT}));

 my $base = "$self->{SERVER_BASE}";
 my $filter = "&(objectClass=controlAccessRight)(uSNSource=$self->{confuser}->{conf_number})";

 my $attributes = $self->ldap_search($base, $filter);
 $attributes = {} if (!defined($attributes));

 return $attributes;
}

sub ret_code {
 my ($self) = @_;
 return $self->{ret_code};
}

 WYDE Authorization Guide 33

Sample of Authorization Adapter for WYDE Radius (WYDERadius)
package Auth::Adapter::WYDERadius;

use Misc::Logger;
use Misc::Config;
use Misc::SystemSettings;
use Authen::Radius;

sub factory {
 return new Auth::Adapter::WYDERadius(@_);
}

sub new {
 my $self = {};
 my $class = shift;
 my $object = bless($self, $class);

 my $parameters = shift;

 my $conf = get_config();
 Authen::Radius->load_dictionary($conf->get('general_lib_dir')."/Auth/Radius/dictionary");

 $logger->debug("Create auth adapter for Radius: parameters=$parameters");

 my @servers = ();

 foreach my $server_info (split(',', $parameters)) {
 my $server = {};
 ($server->{secret}, $server->{host}) = split('@', _trim($server_info));
 push(@servers, $server);
 }

 $self->{servers} = \@servers;
 $self->{ret_code} = -1;

 return $object;
}

sub _trim {
 my $string = shift;
 $string =~ s/^\s+//;
 $string =~ s/\s+$//;
 return $string;
}

sub get_radius_client {
 my ($server) = @_;
 my $radius = new Authen::Radius(
 Host => $server->{host},
 Secret => $server->{secret}
);
 return $radius
}

sub send_radius_request {
 my ($client) = @_;

 $logger->debug("Sending request to RADIUS: username=$username, password=$password");

 $client->send_packet(ACCESS_REQUEST);
 my $reply = $client->recv_packet();

 $logger->debug("got reply from RADIUS: type=$reply");
 if($reply != 2) {
 my $error = Authen::Radius::strerror();
 if ($error ne 'none') {
 $logger->error("Got error on RADIUS request : $error");
 return -1;

 WYDE Authorization Guide 34

 }
 return 0;
 }

 return 1;
}

sub confuser_request {
 my ($self, $client, $username, $password) = @_;

 $client->add_attributes (
 { Name => 'User-Name', Value => $username },
 { Name => 'User-Password', Value => $password },
);

 my $res = send_radius_request($client);
 return $res if ($res <= 0);

 $self->{confuser} = {};
 $self->{attributes} = {};

 for my $attr ($client->get_attributes()) {
 $logger->debug("---$attr->{Name}=$attr->{Value}");

 if($attr->{Name} =~ /conf_number|role|subscriber_id/) {
 $self->{confuser}->{$attr->{Name}} = $attr->{Value};
 } else {
 $self->{attributes}->{$attr->{Name}} = $attr->{Value};
 $self->{attributes}->{$attr->{Name}} = "" if($attr->{Value} eq '-');
 }
 }

 $self->{confuser}->{subscriber_id} = -1 if(!defined($self->{confuser}->{subscriber_id})
);
 return 1;
}

sub subscriber_request {
 my ($self, $client, $pin) = @_;

 $client->add_attributes (
 { Name => 'User-Name', Value => $pin },
 { Name => 'User-Password', Value => $pin },
);

 my $res = send_radius_request($client);
 return $res if ($res <= 0);

 $self->{subscriber} = {};

 for my $attr ($self->{radius}->get_attributes()) {
 $logger->debug("---$attr->{Name}=$attr->{Value}");
 $self->{subscriber}->{$attr->{Name}} = $attr->{Value};
 $self->{subscriber}->{$attr->{Name}} = "" if($attr->{Value} eq '-');
 }
 return 1;
}

sub get_confuser_by_accesscode {
 my ($self, $did_number, $accesscode) = @_;
 my $res = -1;

 foreach my $server (@{$self->{servers}}) {
 my $client = get_radius_client($server);

 if (defined($client)) {
 $res = $self->confuser_request($client, $accesscode, $did_number);
 last if ($res != -1);
 }
 }

 WYDE Authorization Guide 35

 if($res > 0 && $self->{confuser}->{conf_number} ne '') {
 $logger->debug("confuser found in radiusdb: did_number=$did_number,
 accesscode=${accesscode}, conf_number=$self->{confuser}->{conf_number},
 role=$self->{confuser}->{role}");
 } elsif($res != -1) {
 $logger->error("confuser not found in radiusdb: did_number=$did_number,
 accesscode=${accesscode}");
 }

 $self->{ret_code} = $res;
 return $self->{confuser};
}

sub get_confuser_by_number {
 my ($self, $did_number, $conf_number) = @_;
 my $res = -1;

 foreach my $server (@{$self->{servers}}) {
 my $client = get_radius_client($server);

 if (defined($client)) {
 $res = $self->confuser_request($client, $accesscode, $did_number);
 last if ($res != -1);
 }
 }

 if($res > 0 && defined($self->{confuser}->{accesscode})) {
 $logger->debug("confuser found in radiusdb: did_number=$did_number,
 conf_number=$self->{confuser}->{conf_number},
 accesscode=$self->{confuser}->{accesscode},
 role=$self->{confuser}->{role}");
 } elsif($res != -1) {
 $logger->error("confuser not found in radiusdb: did_number=$did_number,
 conf_number=${conf_number}");
 }

 $self->{ret_code} = $res;
 return $self->{confuser};
}

sub get_conference_attributes {
 my ($self) = shift;
 return $self->{attributes};
}

sub get_subscriber_by_pin {
 my ($self, $pin) = @_;
 my $res = -1;

 foreach my $server (@{$self->{servers}}) {
 my $client = get_radius_client($server);

 if (defined($client)) {
 $res = $self->subscriber_request($client, $pin);
 last if ($res != -1);
 }
 }

 if($res > 0 && defined($self->{subscriber}->{custom_name})) {
 $logger->debug("subscriber found in radiusdb: pin=$pin");
 } elsif($res != -1) {
 $logger->error("subscriber not found in radiusdb: pin=$pin");
 }

 $self->{ret_code} = $res;
 return $self->{subscriber};
}

sub get_subscriber_by_id {

 WYDE Authorization Guide 36

 my ($self, $id) = @_;
 $self->{ret_code} = 0;
 return $undef;
}

sub ret_code {
 my ($self) = @_;
 return $self->{ret_code};
}

 WYDE Authorization Guide 37

Appendix B: Definitions, Acronyms and Abbreviations
While we discussed the WYDE Bridge Authorization process in this guide, we used a
common set of terminology. Here we provide the dictionary for the terms you could see
throughout this guide:
x VoIP – Voice over Internet Protocol, a term that refers to the capture/playback of audio

streams and their transmission over IP based networks.
x End Point (EP) – A generic term used to denote the application running on end-user

machines in a VoIP.
x Public Switched Telephone Network (PSTN) – the traditional phone system.
x Bridge – A server that hosts voice conferences. Participants can use PSTN or VoIP

connections to connect to the bridge. It is responsible for mixing the signals and
sending the result back to the participants.

x Gateway – A gateway server between PSTN and VoIP, i.e. a server that terminates end
point connections and routes VoIP data between an end point and the bridge.

x Node – A computer with the asterisk service installed and running. The asterisk is
being installed in Frontend components installation. If you are performing cluster
installation you can have multiple nodes, i.e. multiple asterisk computers in your
WYDE bridge environment.

x Conference User – A user in a conference. Each connection to the conference bridge is
associated with exactly one conference user. An end point can be associated with any
number of conference users. A conference user may or may not be associated with an
end point. The conference user can have one of the roles: host, participant or listener.

x Conference – An audio meeting hosted on a bridge and consisting of PSTN and/or
VoIP participants. A data structure is used to describe ongoing conference on the
bridge. Objects of this type are only created by server. User may fetch these objects by
calling appropriate function. When conference is over the conference object is deleted
by the server.

x Conference Number – A unique external conference number. Conference number is
the property of conference account. If the conference accounts have the same
conference number all these accounts determine one single conference. For instance the
user can create one conference account record that determine host role, another
conference account record that determine participant role, and another conference
account record that determine listener role – all these records should have the same
conference number to determine one unique conference.

x Conference ID – A unique conference ID that represents the instance of a conference.
When any conference is being started it receives unique conference ID, and all calls to
this conference have the same conference ID; if this conference has been completed and
another conference is being started that conference will receive another conference ID.
Conference ID is normally not exposed to users, unless on the reports.

x Session – A data structure represents a single ongoing call on the server. User can not
directly create this object. When the call is over server automatically deletes this object.
Normally this data structure is used to get information about call attributes like
calling/called number etc., or do something with the call, for instance mute, hang, hold
etc.

 WYDE Authorization Guide 38

x Session ID – The unique identifier generated by the bridge for each session
(connection, VoIP as well as PSTN) established between a conference user and the
bridge. The session id is unique within a given conference.

x Audio Key – A key sequence that is used to group different calls from the same
conference in a bundle to manage these calls using real-time or another external
interface. Audio key is short identifier generated externally and provided to the bridge
at the time of joining a conference. Audio key is being generated by real-time
application, for instance Moderator-Console, the user can enter the same audio key on
his DTMF keypad, usually as #audio key#, these calls (the call from real-time
application and the user call to the conference) are being grouped together and the real-
time application can manage this user call (the call with the same audio key), for
instance mute the call, etc.

x Distributed Conference – A conference that is taken place on the different bridges
simultaneously. That means that the calls are being made to the different bridges, but
these calls are participating in the same conference.

x Subscriber – A real person, he has a name, phone number, e-mail address, etc. The
subscriber can have conference accounts, he does not have access codes, but access
codes are properties of conference accounts that have subscribers. Note that non-admin
(non-operator) subscribers can see only “own” information, i.e. his information and
information that belongs to subscribers created by him, he can see only their calls,
conferences, the reports will show only their data, etc.

x PIN – The login ID for the subscriber (must be unique). It can be used either as login in
Web Administration Interface (in this case it can be either number or alpha-numeric) or
as login for some call flows (in this case must be numeric) for participants
authorization.

x Conference Account – The element of subscriber conferences configuration.
Conference accounts always belong to subscriber. It is being used to define a person in
a conference with a particular role (e.g. host, participant, listener, etc.), the DNIS
number that should be used to call to the conference, and the access code that should be
entered by the user that called to the conference DNIS to determine his role. A
subscriber could be a host user in one conference and a listener in another. Conference
accounts with the same conference number represent single conference setup.

x Call Flow – A unique conference service setup, the logic that is used to process the
conference calls. This is the process a call goes through from call setup to, to
processing, to call tear down. It includes the logic, DTMF key-presses used, functions,
and the recorded prompts. There are two basic call flow categories: call flows without
authentication and call flows with authentication.

x Attribute – In terms of WYDE web services API, a data structure is used to carry
attributes for call flow, DNIS and conference account (user). The attributes skeleton is
defined by call flow; other attributes can only override some of them, so for instance
when a user called in to the conference DNIS it gets attributes exposed by the call flow,
but some of these attributes can be already altered by the DNIS. Each attribute has
name, type, value, and role.

x DNIS – A unique set of numbers that is outpulsed by a phone carrier that indicates the
intended destination for a particular call. It can be any length digits (although usually 10

 WYDE Authorization Guide 39

digits). DNIS is the property of the conference account, but different DNIS numbers
can be used to connect to the same conference.

x Access Code – A numeric code unique for DNIS that allows a host or participant or
listener access to a conference call. When users call to DNIS number they being asked
to enter their access code. The access code determines the conference and the user role
in the conference. Different access codes can determine the same conference, for
instance one access code can determine the connected user has host role, another access
code can determine that connected user has participant role, and another access code
can determine that connected user has listener role.

x Host – A user in the conference call that can make changes to the system while the
conference call is in progress. Like change the security setting, change who can talk or
answer, etc. Sometimes the host user is called moderator. This user role is defined in
conference account. This is the most privileged role in a conference. By default,
connections in this role can send and receive RTP data (i.e. the corresponding
participant is allowed to speak and listen). They also are allowed to execute control
actions on all connections and roles.

x Participant – A person in the conference who can actively participate in a call by both
talking and listening. This user role is defined in conference account. Connections in
this role must be allowed to send and receive RTP data by default. They can execute
mute and un-mute commands on their own connections (associated with the same audio
key); but not on other connections. They are allowed to drop connections within the
same bundle (except where the audio key = 0).

x Listener – A person in the conference who can hear the conference call, but cannot
speak. Their audio path is one way only (receive). This user role is defined in
conference account. Connections in this role must not have the privilege to speak. They
are allowed to send RTP packets to provide feedback for bandwidth adaptively on the
stream sent by the bridge. They are allowed to drop connections that are within the
same bundle (except where the audio key = 0). Note: users in listener role can be un-
muted to enable them to talk; however, the listener group as a whole will never be un-
muted.

x Authorization Adapter – A component (function) responsible for specifying access
rights in the conferences. Formally, "to authorize" is to define access policy, i.e. the
right to connect to the conference and specific role (host/moderator/listener) in the
conference.

x Authorization Method – A method that is used to determine the specific authorization
adapter that is applied to authorize in the conference and if necessary the parameters
that could be transferred to this authorization adapter. The authorization method could
be defined either on call flow level or on DNIS level.

 WYDE Authorization Guide 40

Appendix C: Support Resources
If you have difficulty with this guide and any of the procedures listed herein, please contact
us using the following support resources.

Support Documentation
In addition to this Guide, you may obtain other WYDE Voice documentation from WYDE
Voice or from the WYDE Voice documentation Web site: http://docs.wydevoice.com/.

Web Support
Our support website is available 24 hours a day, 7 days a week, and 365 days a year at
http://www.wydevoice.com. You may download patches, support documentation and other
technical support information.

Telephone Support
For difficulties with any procedures described in this Guide, please contact us at 866-508-
9020 during our normal phone support hours of 7:00 am to 6:00 pm Pacific Standard Time
(PST). An engineer will respond to your inquiry within 24 hours.

Email Support
You may also email us your questions at support@wydevoice.com. We will respond to
your question within 24 hours.

http://docs.wydevoice.com/
http://www.wydevoice.com/
mailto:support@wydevoice.com

	Tables List
	Figures List
	Chapter 1: Introduction
	Section 1.1: Authorization Overview
	Section 1.2: Assumed Skills
	Section 1.3: Architecture Overview
	Section 1.4: Integration Adapters

	Chapter 2: Authorization
	Section 2.1: Standard Authorization Adapters and Methods
	Section 2.2: Authorization Integration
	Section 2.3: Custom Authorization Adapters and Methods
	Section 2.4: WYDE Commands to Manage Authorization Adapters and Methods
	Add an Authorization Adapter
	Delete an Authorization Adapter
	View Authorization Adapters
	Add an Authorization Method
	Delete an Authorization Method
	Modify an Authorization Method
	View Authorization Methods

	Chapter 3: Samples of Authorization Adapters for LDAP and Radius
	Section 3.1: Sample of Authorization Adapter for LDAP
	Sample of Active Directory Installation and Configuration on the Bridge
	Sample of WYDE Bridge Configuration for LDAP Authorization

	Section 3.2: Sample of Simple Authorization Adapter for Radius
	Radius Server Installation and Configuration Sample
	Sample of Database Access Configuration for Conference Authorization
	Sample of WYDE Bridge Configuration for Radius Authorization

	Section 3.3: Sample of Authorization Adapter for Radius with Conferences Call Flow Attributes
	Sample of Database Access Configuration for Conference Call Flow Attributes Definition
	Sample of WYDE Bridge Configuration for Radius Authorization

	Chapter 4: wyde Authorization Command Reference
	auth-adapter-add (Add auth Adapter)
	auth-adapter-del (Delete auth Adapter)
	auth-adapter-show (Show auth Adapters)
	auth-method-add (Add auth Method)
	auth-method-del (Delete auth Method)
	auth-method-set (Set auth Method)
	auth-method-show (Show auth Methods)
	auth-reload (Reload auth configuration)

	Appendix A: Authorization Adapters Code Samples
	Sample of Authorization Adapter for Windows Active Directory (WinLdap)
	Sample of Authorization Adapter for WYDE Radius (WYDERadius)

	Appendix B: Definitions, Acronyms and Abbreviations
	Appendix C: Support Resources
	Support Documentation
	Web Support
	Telephone Support
	Email Support

