

Web Services API –
Programmer’s Guide

(version 2.2.290.36)

 Web Services API
 Programmer’s Guide
2

Disclaimer
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN
THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL
ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL
RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE
ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET
THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY
THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR WYDE VOICE REPRESENTATIVE
FOR A COPY.

IN NO EVENT SHALL WYDE VOICE OR ITS SUPPLIERS BE LIABLE FOR ANY
INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES,
INCLUDING, WITHOUT LIMITATION LOST PROFITS OR LOSS OR DAMAGE TO
DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN
IF WYDE OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Copyright
Except where expressly stated otherwise, the Product is protected by copyright and other
laws respecting proprietary rights. Unauthorized reproduction, transfer, and or use can be a
criminal, as well as civil, offense under the applicable law.

WYDE Voice and the WYDE Voice logo are registered trademarks of WYDE Voice LLC
in the United States of America and other jurisdictions. Unless otherwise provided in this
Documentation, marks identified with “R” / ®, “TM” / ™ and “SM” are registered marks;
trademarks are the property of their respective owners.

For the most current versions of documentation, go to the WYDE support Web site:
http://docs.wydevoice.com/

February 21, 2011

http://docs.wydevoice.com/

 Web Services API
 Programmer’s Guide
3

Symbols and Notations in this Manual

The following notations and symbols can be found in this manual.

Denotes any item that requires special attention or care. Damage to the
equipment or the operator may result from failure to take note of the noted
instructions

Figure Denotes any illustration

Table Denotes any table

Text Denotes any text output

Button Denotes any button caption

 Web Services API
 Programmer’s Guide
4

Table of Contents
Symbols and Notations in this Manual... 3
Table of Contents ... 4

Tables List .. 7
Figures List ... 8

Chapter 1: Introduction... 9
Assumed Skills ... 9
Web Services .. 10
Definitions .. 10

Chapter 2: Data Structures.. 14
General Data Structure ... 14
Data Classes (Entities).. 16

Subscriber ... 16
Conference Account – Conference User (Confuser).. 16
Conference Info (ConfInfo).. 17
DNIS... 18
DNIS Alias (DnisAlias).. 18
Call Flow (CallFlow).. 18
Attribute.. 19
Conference.. 19
Operator Status (OperatorStatus).. 20
ConferenceDR .. 21
Polling Result (PollingResult) .. 21
Operator’s Statistic (OperatorStatistic) .. 21
Session.. 22
SessionDR .. 23
DTMF Event (DtmfEvent) ... 23
Subscriber Conference (SubscriberConference) .. 23

Chapter 3: Samples of Functions.. 25
WYDE Web Services Initialization.. 25

Sample of WYDE Web Services Initialization .. 25
Web Methods’ XML Requests and Responses .. 25

Sample of XML for Function with Multiple Parameters Sent and List of Objects
Received ... 25
Sample of XML for Function with the Object Parameter Sent and the Object Received
.. 26

Subscribers Management.. 26
Sample of Subscriber and his Conference Accounts Creation..................................... 26
Sample of Subscribers Filtering, Modifications, Conference Accounts Modifications26
Sample of Subscribers Filtering and Deletion.. 27
Sample of Getting Conference Users Information ... 27

Conferences and Calls Management .. 27
Sample of Conferences Filtering, Changes Secure Mode, Dropping the Conferences 27
Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A
Sessions and Conference Recording .. 28

 Web Services API
 Programmer’s Guide
5

Sample of Conference Polling Sessions ... 29
Sample of Calls Filtering, Mute the Calls, Dropping the Calls.................................... 29
Sample of Setting Custom Name and Placing Calls on Hold 29

CDRs Management .. 30
Sample of Getting Conferences Historical Information... 30
Sample of the Shared Recording Generation ... 30
Sample of Getting Calls Historical Information... 31
Sample of Historical Calls Filtering ... 31

Active Speaker Notification ... 31
Storage Library ... 33

Conference Files Folder Structure and Showing Folder Content................................. 34
File upload .. 35
Files management ... 35

Chapter 4: Function Reference... 38
Subscribers Management.. 38
Subscribers’ Conference Users Management... 41
Conference Info Management .. 43
Conferences and Calls Management .. 45
Subscribers’ Conferences Management ... 58
CDRs Management .. 60
Call Flow and DNIS Management ... 68
Backend and Frontend Services Management.. 72
Exceptions .. 74
Constants .. 74

Appendix A: Code Samples ... 76
WYDE Web Services Initialization.. 76

Sample of WYDE Web Services Initialization .. 76
app.config ... 78

Web Methods’ XML Requests and Responses .. 79
Sample of XML Request for Function with Multiple Parameters Sent 79
Sample of XML Response for Function with List of Objects Received...................... 80
Sample of XML Request for Function with the Object Parameter Sent 82
Sample of XML Response for Function with the Object Received 83

Subscribers Management.. 88
Sample of Subscriber and his Conference Accounts Creation
(Sample_ManageSubscriber1) ... 88
Sample of Subscribers Filtering, Modifications, Conference Accounts Modifications
(Sample_ManageSubscriber2) ... 91
Sample of Subscribers Filtering and Deletion (Sample_ManageSubscriber3) 94
Sample of Getting Conference Users Information (Sample_ManageConfuser1) 95

Conferences and Calls Management .. 98
Sample of Conferences Filtering, Changes Secure Mode, Dropping the Conferences
(Sample_ManageConference1) .. 98
Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A
Sessions and Conference Recording (Sample_ManageConference2)........................ 101
Sample of Conference Polling Sessions (Sample_ManageConference3) 104

 Web Services API
 Programmer’s Guide
6

Sample of Calls Filtering, Mute the Calls, Dropping the Calls (Sample_ManageCall1)
.. 106
Sample of Setting Custom Name and Placing Calls on Hold (Sample_ManageCall2)
.. 109

CDRs Management .. 111
Sample of Getting Conferences Historical Information (Sample_InfoConferenceDR1)
.. 111
Sample of the Shared Recording Generation (Sample_InfoConferenceDR2) 113
Sample of Getting Calls Historical Information (Sample_InfoSessionDR1)............. 115
Sample of Historical Calls Filtering (Sample_InfoSessionDR2) 118

Appendix B: Support Resources .. 120
Support Documentation.. 120
Web Support ... 120
Telephone Support.. 120
Email Support ... 120

 Web Services API
 Programmer’s Guide
7

Tables List
Table 1: Properties of Subscriber ... 16
Table 2: Properties of Confuser.. 17
Table 3: Properties of ConfInfo.. 17
Table 4: Properties of DNIS ... 18
Table 5: Properties of DnisAlias .. 18
Table 6: Properties of CallFlow ... 18
Table 7: Properties of Attribute.. 19
Table 8: Properties of Conference.. 20
Table 9: Properties of OperatorStatus .. 20
Table 10: Properties of ConferenceDR .. 21
Table 11: Properties of PollingResult... 21
Table 12: Properties of OperatorStatistic ... 21
Table 13: Properties of Session .. 22
Table 14: Properties of SessionDR... 23
Table 15: Properties of DtmfEvent... 23
Table 16: Properties of SubscriberConference... 24

 Web Services API
 Programmer’s Guide
8

Figures List
Figure 1: The Web Services Architecture .. 10
Figure 2: The UML Class Diagram.. 15
Figure 3: Folder Content Sample ... 34

 Web Services API
 Programmer’s Guide
9

Chapter 1: Introduction
WYDE conferencing bridges (like SB 1000) provide different API that allow manage
conferences and calls, configure subscribers and their conference account, maintain DNIS
and call flow management. The basic APIs are
x web services API,
x RT (real time) interface,
x different adapters, for instance

o billing adapter that allow writing calls and conferences information to an
external database,

o authentication adapter that allow user authentication based on external
database), etc.

This document is programmer’s guide for the web services API only. Other APIs are being
described in the separate documentation.

Please note that if call flow is setup to use external authentication server (like RADIUS)
user management API should not be used.

WYDE web services API is designed to query and manage calls and conferences happening
on the bridge, manage subscribers and their conference accounts. Through the API you also
can manage users and access code used for local authentication. API helps to get
information not only in real time mode, but also happened in the past.

The URL for the WYDE web services is http://<Wyde bridge domain>/dnca/jAdmin?wsdl.
In some languages to point to WYDE web services you may need to use URL without
“?wsdl” suffix: http://<Wyde bridge domain>/dnca/jAdmin. Here <WYDE bridge domain>
is either the registered domain name or IP address that gives the destination location for the
WYDE web services URL. For instance the possible WYDE web services URLs could be
http://dnca0.freeconferencecall.com/dnca/jAdmin?wsdl or
http://192.168.1.5/dnca/jAdmin?wsdl.

This Web Service Interfaces – Programmer’s Guide is based on WYDE web
services API version 2.2.290.36. If you use another version of API the same
functions may be different and you may need other version of the guide.

You can check the version of your software using the following URL:
http://<Wyde bridge domain>/version.html. For instance the possible WYDE software
version URLs could be http://dnca0.freeconferencecall.com/version.html or
http://192.168.1.5/version.html.

Assumed Skills
This programmer’s guide assumes you have a working knowledge of the following
technologies and skills:
x PC usage

http://dnca0.freeconferencecall.com/dnca/jAdmin?wsdl
http://dnca0.freeconferencecall.com/version.html

 Web Services API
 Programmer’s Guide
10

x System administration
x Programming basics (in some kind of programming languages)
x Understanding of object-oriented classes structure, UML basics
x VOIP basics
x TCP/IP networking
x Web Administration Interface – User Guide

Web Services
Formal Web Service definition is given by World Wide Web Consortium (W3C) – the
main international standards organization for the World Wide Web. According to W3C, a
web service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.

Web services architecture is shown on Figure 1.

Figure 1: The Web Services Architecture

Web services are platform independent. Web services are based on open standards and
protocols. Web services are supported by most major software vendors and industry
analysts. You can access WYDE web services from different platforms and from different
programming languages.

The detail information about web services can be read in the following articles:
x Web Services Architecture – http://www.w3.org/TR/ws-arch/
x Web Services Activity – http://www.w3.org/2002/ws/
x Web Services Glossary – http://www.w3.org/TR/ws-gloss/

Definitions
In order to discuss the WYDE web services API effectively, we need to have a common set
of terminology. For this purpose, we should definite the dictionary for the terms you will
see throughout this programmer’s guide:

http://www.w3.org/TR/ws-arch/
http://www.w3.org/2002/ws/
http://www.w3.org/TR/ws-gloss/

 Web Services API
 Programmer’s Guide
11

x Class – A programming language construct that is used as a template to create objects
of that class. This template describes the state and behavior that the objects of the class
all share. An object of a given class is called an instance of the class. The class that
contains that instance can be considered as the type of that object. The classes that are
designed in the web services API are Subscriber, Call Flow (CallFlow), DNIS,
Conference Account/User (Confuser), Attribute, Conference Info (ConfInfo), Session,
SessionDR, Conference, ConferenceDR.

x Identifier – A unique key to uniquely identify each instance of the class. In WYDE
web services API data structure, the identifier is the single property value, usually it is
numeric (long) identifier (ID). Identifier can be used to retrieve information about the
single instance of the class; the WYDE web services API contains methods get<Class>
(for instance getSubscriber, getDNIS, etc.) that are used to get single instance of the
class using the transferred parameter – the identifier of the object instance.

x Reference Identifier – A referential constraint between two classes that is used to join
the classes. The reference identifier identifies a column or a set of columns in one
(referencing) class that refers to a column or set of columns in another (referenced)
class. The columns in the referencing class must be the identifier. The values in the
referencing columns of one class instance must occur in a single instance in the
referenced class; an instance in the referencing class cannot contain values that don't
exist in the referenced class. In other words these constructs are being used to join the
classes and the instances of these classes. For instance Confuser class has reference
identifier subscriberId; the values of this attribute allow join different Conference User
objects with Subscribers, who own these Conference Users.

x Subscriber – A real person, he has a name, phone number, e-mail address, etc. The
subscriber can have conference accounts, he does not have access codes, but access
codes are properties of conference accounts that have subscribers. Note that non-admin
(non-operator) subscribers can see only “own” information, i.e. his information and
information that belongs to subscribers created by him, he can see only their calls,
conferences, the reports will show only their data, etc.
To describe subscribers web services API has the class Subscriber; the identifier of this
class is subscriberId; the following classes have reference identifiers to the Subscriber
class: Confuser, Session, SessionDR, i.e. they are joined with Subscribers; Subscribers
can own conference accounts (conference users) information.

x PIN – The login ID for the subscriber (must be unique). It can be used either as login in
Web Administration Interface (in this case it can be either number or alpha-numeric) or
as login for some call flows (in this case must be numeric) for participants
authorization.

x Conference Account – The element of subscriber conferences configuration.
Conference accounts always belong to subscriber. It is being used to define a person in
a conference with a particular role (e.g. host, participant, listener, etc.), the DNIS
number that should be used to call to the conference, and the access code that should be
entered by the user that called to the conference DNIS to determine his role. A
subscriber could be a host user in one conference and a listener in another. Conference
accounts with the same conference number represent single conference setup.

 Web Services API
 Programmer’s Guide
12

To describe conference accounts web services API has the class Confuser (Conference
User); the identifier of this class is confuserId; this class has reference identifier to the
following classes: Subscriber, DNIS, ConfInfo, and set of Attributes.

x DNIS – A unique set of numbers that is outpulsed by a phone carrier that indicates the
intended destination for a particular call. It can be any length digits (although usually 10
digits). DNIS is the property of the conference account, but different DNIS numbers
can be used to connect to the same conference.
To describe DNIS web services API has the class DNIS; the identifier of this class is
dnisId; this class has reference identifier to the CallFlow classes and set of Attributes;
the Confuser class has reference identifier to the DNIS class.

x Access Code – A numeric code unique for DNIS that allows a host or participant or
listener access to a conference call. When users call to DNIS number they being asked
to enter their access code. The access code determines the conference and the user role
in the conference. Different access codes can determine the same conference, for
instance one access code can determine the connected user has host role, another access
code can determine that connected user has participant role, and another access code
can determine that connected user has listener role.

x Host – A user in the conference call that can make changes to the system while the
conference call is in progress. Like change the security setting, change who can talk or
answer, etc. Sometimes the host user is called moderator. This user role is defined in
conference account.

x Participant – A person in the conference who can actively participate in a call by both
talking and listening. This user role is defined in conference account.

x Listener – A person in the conference who can hear the conference call, but cannot
speak. Their audio path is one way only (receive). This user role is defined in
conference account.

x Conference Number – A unique external conference number. Conference number is
the property of conference account. If the conference accounts have the same
conference number all these accounts determine one single conference. For instance the
user can create one conference account record that determine host role, another
conference account record that determine participant role, and another conference
account record that determine listener role – all these records should have the same
conference number to determine one unique conference.
To represent unique conference (conference number) web services API has the class
ConfInfo (Conference Info); the identifier of this class is conferenceNumber; the
following classes have reference identifiers to the ConfInfo class: Confuser, Session,
SessionDR, Conference, ConferenceDR, i.e. they are joined with specific conference
information.

x Conference ID – A unique conference ID that represents the instance of a conference.
When any conference is being started it receives unique conference ID, and all calls to
this conference have the same conference ID; if this conference has been completed and
another conference is being started that conference will receive another conference ID.
Conference ID is normally not exposed to users, unless on the reports.

x Call Flow – A unique conference service setup, the logic that is used to process the
conference calls. This is the process a call goes through from call setup to, to
processing, to call tear down. It includes the logic, DTMF key-presses used, functions,

 Web Services API
 Programmer’s Guide
13

and the recorded prompts. There are two basic call flow categories: call flows without
authentication and call flows with authentication.
To describe call flows web services API has the class CallFlow; the identifier of this
class is callflowId; this class has a set of Attributes; the DNIS class has reference
identifier to the CallFlow class.

x Attribute – In terms of WYDE web services API, a data structure is used to carry
attributes for call flow (CallFlow), DNIS and conference user (Confuser). The attributes
skeleton is defined by call flow; other attributes can only override some of them, so for
instance when a user called in to the conference DNIS it gets attributes exposed by the
call flow, but some of these attributes can be already altered by the DNIS. Each
attribute has name, type, value, and role. The names of the attributes are unique;
CallFlow, DNIS, and Confuser classes have a set of Attribute objects associated with
them.

x Conference – A data structure is used to describe ongoing conference on the bridge.
Objects of this type are only created by server. User may fetch these objects by calling
appropriate function. When conference is over the conference object is deleted by the
server.
The conference object is identified by the conferneceId property value, this is a globally
unique identifier that represents the instance of a conference; this class has reference
identifier to a ConfInfo class (conference number); SessionDR class has reference
identifier to the Conference class.

x ConferenceDR – A data structure is used to describe conference which is already
terminated on the on the bridge. User can not directly create this object.
The conferenceDR object is identified by the conferneceId property value; this class has
reference identifier to a ConfInfo class (conference number).

x Session – A data structure represents a single ongoing call on the server. User can not
directly create this object. When the call is over server automatically deletes this object.
Normally this data structure is used to get information about call attributes like
calling/called number etc., or do something with the call, for instance mute, hang, hold
etc.
The identifier of the Session class is sessionId; this class has reference identifiers to
Subscriber and ConfInfo classes.

x SessionDR – A data structure represents a single call on the server which is already
terminated on the on the bridge. User can not directly create this object.
The identifier of the SessionDR class is sessionId; this class has reference identifiers to
Subscriber, ConfInfo, and Conference classes.

 Web Services API
 Programmer’s Guide
14

Chapter 2: Data Structures

General Data Structure
The class diagram, data classes (entities) and relations between them are shown on Figure
2. Boxes on this figure are representing data classes (entities), these classes will be
described in the next section of this guide; names of the classes are shown in bold,
identifiers are shown in blue color, reference identifiers are shown in green color,
encapsulated properties are shown in brown color, references (relations) between
classes are shown with black solid arrows, encapsulations (aggregations) between classes
are shown with brown dash lines ended with diamonds, related class data (data that can be
retrieved using the related class identifier) are shown with brown dotted lines ended with
diamonds. Classes and fields added in the version 2.x are shown highlighted (turquoise).

 Web Services API
 Programmer’s Guide
15

Figure 2: The UML Class Diagram

 Web Services API
 Programmer’s Guide
16

Data Classes (Entities)

Subscriber
This data structure holds information about subscribers. Subscriber is a real person; he has
a name, phone number, e-mail address, etc. The subscriber can have conference accounts,
he does not have access codes, but access codes are properties of conference accounts that
have subscribers. Subscribers should make a hierarchy – that is why each subscriber has
reference to another subscriber who created it. Subscriber which doesn’t have a parent -
called Administrator. Note that non-admin (non-operator) subscribers can see only “own”
information, i.e. his information and information that belongs to subscribers created by
him, he can see only their calls, conferences, the reports will show only their data, etc.

Table 1: Properties of Subscriber
String address1 Subscriber’s address
String address2
String city Subscriber’s city
Confuser[] confusers List of confusers this subscriber associated with. It can be

populated by user during subscriber
String country
Date created Date when record is created; assigned by the server
String details Any additional details
String email Subscriber’s e-mail
String firstName Subscriber real first name (*)

Subscriber real last name (*) String lastName
long parentId ID of parent subscriber (*)
String password password for the logging in to the web interface (*)
String phoneNumber Subscriber’s phone number used if server needs to dial-out to

this subscriber
String pin pin for the logging in to the web interface (*)

pin should be unique among all subscribers on the server
if pin is used to identify subscriber in a callflow it should
consist only digits
Subscriber’s role (i.e. admin, operator, regular user, etc.)
Possible values: ROLE_ADMIN (1L), ROLE_OPERATOR (2L),
ROLE_USER (3L)

long role

long subscriberId Unique ID assigned by the server
String zip Subscriber’s zip code
* – for this and all subsequent classes designates mandatory fields during object creation or
modification
** – for this and all subsequent classes designates fields that were added in version 2.1 and
did not exist in version 1.x.
*** – for this and all subsequent classes designates fields that were renamed in version 2.1.

Click here to see subscriber XML and class definition.

Conference Account – Conference User (Confuser)
Conference user (Confuser) class represents conference account, described in web
administration interface guide.

Conference account is the element of subscriber conferences configuration. Conference
accounts always belong to subscriber. It is being used to define a person in a conference
with a particular role (e.g. host, participant, listener, etc.), the DNIS number that should be
used to call to the conference, and the access code that should be entered by the user that
called to the conference DNIS to determine his role. A subscriber could be a host user in

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Classes/Class_Subscriber.htm

 Web Services API
 Programmer’s Guide
17

one conference and a listener in another. Conference accounts with the same conference
number represent single conference setup.

Additionally, it is possible to override some attributes exposed by default callflow so this
Conference user has a customized behavior (For example this user can disable entry tones
just for him while all other users on this number still have them on).

Conference user object can exist only if there is the subscriber that own this confuser and if
this conference user assigned to DNIS and if this conference user has conference info
(conference number) information that is referred by him. Thus subscriber deletion, DNIS
deletion, conference info deletion performs cascade delete of all associated conference
users.

Table 2: Properties of Confuser
String accessCode Access code for this user. It is used for authentication in a

conference. Access code should be unique across other
accessCodes (*)

ConfInfo conferenceInfo Holds information about the conference this confuser
participates in

long confuserId Unique ID assigned by the server
Date created Date when record is created; assigned by the server
long dnisId ID of DNIS object this user is associated with (*)
long role Role of this confuser Moderator/Host (1L), Participant (2L),

Listener (3L) (*)
long subscriberId ID of subscriber this confuser belongs to

Click here to see conference user XML and class definition.

Conference Info (ConfInfo)
This data structure is designed to uniquely identify conference. It is a part of "Conference
User” definition and consists of the fields described in Table 3.

All Conference Users with any access codes and the same conferenceNumber will be
assigned to the same conference. Please note that Conference Users are not obliged to dial
the same DNIS to get to the same conference. To create a new conference you need to pass
0 as a conferneceNumber and provide meaningful description of this conference. In this
case server automatically assigns a new unique conferenceNumber.

Table 3: Properties of ConfInfo
Attribute[] attributes List of attributes and their values imposed by the call flow

this conference is assigned to. These attributes may be
overwritten for this particular user or taken from parent or
defaults (**)

long conferenceNumber Identifier of the conference where this user will be assigned
after successful authentication. It should be unique across
other conference numbers; 0 means create a new one (***)

String description Description of the conference; if conferenceNumber=0 holds new
conference description

Click here to see conference info XML and class definition.

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Classes/Class_Confuser.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Classes/Class_ConfInfo.htm

 Web Services API
 Programmer’s Guide
18

DNIS
DNIS is a unique set of numbers that is outpulsed by a phone carrier that indicates the
intended destination for a particular call. This data structure holds information about
registered DNIS (called phone numbers) on the bridge. Besides the phone number (usually
10 digits length) each DNIS has a reference to a callflow.

Conference accounts have DNIS (dnisId) as its property, but different DNIS numbers can
be used to connect to the same conference. In addition different DNISes can be based on
the same callflows but just have different attributes (like a welcome prompt for example).

Table 4: Properties of DNIS
DnisAlias[] aliases Available aliases for this DNIS (**)
Attribute[] attributes DNIS attributes inherited and may be overwritten from callflow
long callflowId ID of callflow this DNIS belongs to
String description Description
String did Telephone number, or name if connected to VOIP switch (*)
long dnisId Unique ID assigned by the server

Click here to see DNIS XML and class definition.

 DNIS Alias (DnisAlias)
The DnisAlias data structure represents a DNIS alias.

Table 5: Properties of DnisAlias
String description Alias description
String mask Number pattern (*, 712*, etc.)

Note. This data structure was added in version 2.1 and did not exist in version 1.x.

Click here to see DNIS alias XML and class definition.

Call Flow (CallFlow)
Call flow is a unique conference service setup, the logic that is used to process the
conference calls. This is the process a call goes through from call setup to, to processing, to
call tear down. It includes the logic, DTMF key-presses used, functions, and the recorded
prompts. Each script takes several parameters (like welcome prompt).

Call flows cannot be dynamically created by user as they need to be put into the proper
place on the file system and need to be configured by administrator. However end-user
should be able to change attributes of already registered call flows in order to customize
their behavior.

Table 6: Properties of CallFlow
Attribute[]
attributesTemplate

Template of attributes for DNIS and confusers (***)

long callflowId Unique ID assigned by the server
String name Callflow description (*), for instance CONF, SPECTEL, etc.
String path Directory where callflow resides on the server (*)

Click here to see call flow XML and class definition.

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Classes/Class_DNIS.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Classes/Class_DnisAlias.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Classes/Class_CallFlow.htm

 Web Services API
 Programmer’s Guide
19

Attribute
This data structure is used to carry attributes for call flow (CallFlow), DNIS and conference
user (Confuser). The attributes skeleton is defined by call flow. Other entities can only
override some of them. So when a user called in to the conference DNIS it gets attributes
exposed by the call flow. Some of these attributes can be already altered by the DNIS. After
the user provided his access code and authentication was successful some attributes can be
overwritten again by the conference user (Confuser).

It is important to remember that list of attributes is always defined by call flow. Values of
some attributes may be overwritten by DNIS and Confuser. Each attribute can be allowed
or disallowed for modification by the administrator. The call flow offers default values for
each attribute.

Each attribute has name, type and value. Depending of the type web application should
apply one or another validation rule. Also attribute has a “role” so confuesrs can only see
those attributes which role matches their own role.

Table 7: Properties of Attribute
String enumValues if type is eEnum this variable holds possible choices like

choice1;choice2;choice3 – this is readonly field populated by
server

boolean isOverridden x if the attributes are being getting for Call Flow
(attributesTemplate property) this property is always false;

x if the attributes are being retrieved for DNIS (as
aggregated attributes property) true value means that the
attribute is defined on DNIS level and false value means
that the attribute is defined on call flow level;

x if the attributes are being retrieved for ConfInfo (as
aggregated attributes property) true value means that the
attribute is defined on ConfInfo level, false – otherwise;

x if DNIS object is being saved (using createDNIS or
updateDNIS) this property true value means that the
attribute should be overridden (saved) on DNIS object level;

x if ConfInfo object is being saved (using
createConferenceInfo or updateConferenceInfo) this property
true value means that the attribute should be overridden
(saved) on ConfInfo object level;

String name attribute name like “ALLOW_CONTINUE” (*)
long role confuser role this attribute belongs to (*): ROLE_CALLFLOW

(3L), ROLE_CONFERENCE (1L), ROLE_DNIS (0L)
long type attribute type like TYPE_STRING (0L), TYPE_BILLINGRULE (1L),

TYPE_INT (2L), TYPE_DTMF (3L), TYPE_ROLE (4L), TYPE_CHOICE
(5L) (*)

String value attribute value like TRUE (*)

Click here to see attribute XML and class definition.

Conference
This data structure is used to describe ongoing conference on the bridge. Objects of this
type are only created by server. User may fetch these objects by calling appropriate
function. When conference is over object is deleted by the server.

The conference object is identified by conferneceId, this is a globally unique identifier that
represents the instance of a conference. So if user has two conferences with the same access
code or conference number – these conferences will have different conferneceId. It is

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Classes/Class_Attribute.htm

 Web Services API
 Programmer’s Guide
20

important to not mix it up with Conference Number. In the previous example these two
conferences will have the same Conference Number; the conference number is the property
of conference account; if the conference accounts have the same conference number all
these accounts determine one single conference.

Table 8: Properties of Conference
long conferneceId Unique ID assigned by the server
long conferenceNumber This is a conference number (***)
Date created Time when this conference was created – the first caller

arrived
long duration Number of seconds which have elapsed since the conference was

created
boolean isOnHold This field determines whether the conference is on hold
boolean isPolling This field determines whether the polling session is started

(**)
boolean isRecording This field determines whether the conference is being recorded
boolean isSecured This field determines whether the conference is secured, i.e.

new calls allowed to join to the conference or not
long muteMode This field determines mute mode:

MUTE_MODE_OPEN (0L), MUTE_MODE_QUESTION (1L), MUTE_MODE_CLOSED
(2L)
When MUTE_MODE_OPEN mode is enabled any conference participant
can talk and mute/unmute himself. When MUTE_MODE_QUESTION mode
is enabled all conference participants are muted however any
of them can unmute himself to ask a question. When
MUTE_MODE_CLOSED mode is enabled all conference participants
are muted and can not unmute himself

OperatorStatus
operatorStatus

This fields represents the operator’s activity, i.e. it
contains the data structure that describes the operator’s
conference

long participantCnt Number of participants in the conference
long qaMode This field determines Q&A mode (**):

QA_MODE_OPEN (0L), QA_MODE_CLEAR (1L), QA_MODE_CLOSED (2L)

Click here to see conference XML and class definition.

Operator Status (OperatorStatus)
This data structure is designed to show the status of the operator’s conference.

Table 9: Properties of OperatorStatus
long
engagedConferenceNumber

Conference number of the connected conference

boolean isConnected This field determines whether the operator’s conference is
currently connected to the other one (in this case this
property is set to true).

boolean isMonitoring For the operator conference this field determines whether the
operator conference is in scanning mode (i.e. surveillance
call, usually started when the operator presses *1 on his
phone keypad)

long status This field determines operators conference mode
CONFERENCE_REGULAR (0L), CONFERENCE_OPERATOR (1L),
CONFERENCE_LISTEN (2L), CONFERENCE_AUTOLISTEN (3L),
CONFERENCE_AUTOLISTEN_SLEEP (4L), CONFERENCE_TALK (5L)

Note. This data structure was added in version 2.1 and did not exist in version 1.x.

Click here to see operator status XML and class definition.

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Classes/Class_Conference.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Classes/Class_OperatorStatus.htm

 Web Services API
 Programmer’s Guide
21

ConferenceDR
This data structure is used to describe conference which is already terminated on the bridge.
User can not directly create this object.

Table 10: Properties of ConferenceDR
long conferneceId Unique ID assigned by the server
long conferenceNumber This is a conference number (***)
Date created Time when this conference was created -first caller arrived
long duration Number of seconds which have elapsed since the conference was

created till the time when it was terminated
Date expirePeriod Expiration period for shared recording URL
boolean hasPollingResults Whether or not conference was voted, i.e. whether or not the

conference was voted (**)
boolean hasRecording Whether or not conference was recorded
long participantCnt Number of participants in the conference
long recordingDuration Recording duration in seconds (***)
String recordingUrl URL for the recording
String sharedRecordingUrl URL for shared recording

Click here to see conferenceDR XML and class definition.

Polling Result (PollingResult)
The PollingResult data structure represents polling results for the specific conference. The
conference should be referenced by conferenceId.

Table 11: Properties of PollingResult
Date created Time when this polling was initiated
Map<object, object> votes Sequence of option:votesCount pairs (represented by long

values)

Note. This data structure was added in version 2.1 and did not exist in version 1.x.

Click here to see polling result XML and class definition.

Operator’s Statistic (OperatorStatistic)
This data structure represents an activity statistic for specific operator in the OPERATOR
conference.

Table 12: Properties of OperatorStatistic
String accessCode Operator’s access code
long answerAvg Average answer’s duration
long answerWaitAvg Average customer’s wait time in seconds
long answersCount Number of answers
String did Assigned did or did mask
String name Operator’s name
long timeOnline Time spent online in seconds

Note. This data structure was added in version 2.1 and did not exist in version 1.x.

Click here to see operator’s statistic XML and class definition.

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Classes/Class_ConferenceDR.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Classes/Class_PollingResult.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Classes/Class_OperatorStatistic.htm

 Web Services API
 Programmer’s Guide
22

Session
This data structure represents a single ongoing call on the server. User can not directly
create this object. When the call is over server automatically deletes this object.

Normally this data structure is used to get information about call attributes like
calling/called number etc. If something needs to be done with the call (mute/hang/hold) the
call should be referenced by sessionId.

Table 13: Properties of Session
String accessCode access code entered by caller

Full address FROM, i.e. full qualified caller’s address String addressFrom
String addressTo Full address TO, i.e. full qualified ɫallee’s address
String bridgeName Name of hosted bridge (**)
String callee Information about callee as it is provided in TO field
String caller Information about caller as it is provided in FROM field

(normally the phone number)
String codec The active audio codec of the session, i.e. the technical name

of the codec, that is used by the call, for example PCMU for
uLaw, SIREN7 for 722.1, SIREN14 for 722.2, ILBC, etc. (**)

long conferenceId Conference identifier of the conference this session belongs
to (**)

long conferenceNumber Conference number of the conference this session belongs to
long connectionStatus Bit-mask that indicates the optional session attributes, for

example session direction: 0 – the inbound call, 1 – the
outbound call (**)

Date created Time when this session was created
String customName custom user name either set from the web or IVR (PIN)
long duration Number of seconds which have elapsed since the session started
long gainLevel The microphone volume level of the call, i.e. gain control

option; it could be from -10 till 10 or 255; -10 is the
quietest (lowest) sound level, 10 is the loudest (highest)
sound level, 255 denotes that the microphone level is being
automatically adjusted by the backend (**)

boolean isMuted whether this session is muted or not
boolean isOnHold whether this session is put on hold by administrator
boolean isOnHoldSelf whether this session is put on hold by the client (owner)
String jobCode Active billing (business) code (**)
Date joined Time when this session joined to the conference
String nodeName Name of hosted node (**)
String operatorMode This filed represents the operator’s activity (for instance,

empty, waiting for operator, speaking with operator, etc.).
Possible values:
x null (empty) – the caller does not need operator assistance;
x wait – the caller is waiting operator assistance, i.e. the

caller is in the operator’s queue;
x talk – the caller is talking to the operator

long qaStatus This filed represents Q&A mode for current session:
QA_STATUS_IDLE (0L), QA_STATUS_RAISEDHAND (1L),
QA_STAUS_ACTIVE (2L)

long role This field determines what role this session has. The roles
should be the same as in Confusers. Role helps to verify
whether this session is allowed to do recording –
MODE_UNDEFINED (0L) MODE_HOST (1L) – host permissions granted,
MODE_PARTICIPANT (2L) – caller controls muting, i.e. the
session owner can mute/unmute himself, MODE_LISTENER (3L) –
the session owner can only listen and can not talk,
MODE_RECORDING (4L) – the recording session, MODE_DC_LINK (8L)
– distributed conference (DC) link, i.e. the control call
between two bridges in distributed conferencing

long sessionId Unique ID assigned by the session
long status This field determines whether the current session status:

STATUS_IVR (1L) - session is owned by frontend;
STATUS_CONFERENCE (2L) - session is owned by backend;
STATUS_CLOSED (3L) - session is closed; STATUS_DIALING (4L) -
session is dealing

long subscriberId ID of subscriber assigned by the session

 Web Services API
 Programmer’s Guide
23

Click here to see session XML and class definition.

SessionDR
This data structure represents a single call on the server which is already terminated on the
on the bridge. User can not directly create this object.

Table 14: Properties of SessionDR
String accessCode access code entered by caller
String addressFrom Full address FROM, i.e. full qualified caller’s address
String addressTo Full address TO, i.e. full qualified ɫallee’s address
String bridgeName Name of hosted bridge (**)
String callee Information about callee as it is provided in TO field (**)
String caller Information about caller as it is provided in FROM field

(normally the phone number)
Conference identifier of the conference this session belongs
to

long conferenceId

long conferenceNumber Conference number this session belongs to
Date created Time when this session was created
String customName custom user name either set from the web or IVR (PIN)
long disconnectInitiator Shows who initiated a disconnect (user, bridge):

INITIATOR_BRIDGE (2L) – used when session was terminated by
bridge; INITIATOR_UNDEFINED (0L) – used when initiator is not
defined; INITIATOR_USER (1L) – used when session was
terminated by user

String disconnectReason A string showing detailed info about disconnect
long duration Number of seconds which have elapsed since the session started

and before disconnect
String jobCode Active billing (business) code (**)
Date joined Time when this session joined to the conference
String nodeName Name of hosted node (**)
long role This field determines what role this sessions had.
long sessionId Unique ID assigned by the session
long subscriberId ID of subscriber assigned by the session

Note if the operator was involved into the call – the user called to the operator and the
operator attached the user to another conference there would be two SessionDR records
with the same session identifier (sessionId). These records will differ by disconnect reason.

Click here to see sessionDR XML and class definition.

DTMF Event (DtmfEvent)
The DtmfEvent data structure represents a single DTMF command.

Table 15: Properties of DtmfEvent
Date created Time when this DTMF event was initiated
String dtmf The DTMF command

Note. This data structure was added in version 2.1 and did not exist in version 1.x.

Click here to see DTMF event XML and class definition.

Subscriber Conference (SubscriberConference)
This data structure represents the single subscriber’s conference. The conference can be
either started or not started. The class is being represented by two properties – conference
that describes ongoing subscriber conference on the bridge and subscriber that describes the

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Classes/Class_Session.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Classes/Class_SessionDR.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Classes/Class_DtmfEvent.htm

 Web Services API
 Programmer’s Guide
24

subscriber of the conference, for each conference this subscriber field contains the list of
Confusers objects for that single conference only. That means that the each instance of the
class for the selected conference (conference number) contains the active conference
information (if the conference not started only conference number property is populated,
conference identifier in this case equal 0) and its subscriber information, the subscriber
information could contain up to three conference users information – for the conference
host, the conference participant, and the conference listener.

Table 16: Properties of SubscriberConference
Conference conference The ongoing conference information with its properties
Subscriber subscriber The subscriber information for the conference including up to

three conference users (for host, participant, and listener)

Note. This data structure was added in version 2.2 and did not exist in previous versions.

Click here to see DTMF event XML and class definition.

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Classes/Class_SubscriberConference.htm

 Web Services API
 Programmer’s Guide
25

Chapter 3: Samples of Functions

WYDE Web Services Initialization

Sample of WYDE Web Services Initialization
To use WYDE Web Services, i.e. to call its methods, they should be pre-initialized and pre-
authenticated in your code – you should set web services URL (http://<WYDE bridge
domain>/dnca/jAdmin), user name (subscriber PIN) and password that should be used in
the authentication.

Click here to see sample of the web services initialization source code and configuration
file:
¾ Sample in this document;
¾ Sample on the web (requires Internet access and web browser).

Web Methods’ XML Requests and Responses
Each web services function (web method) when it is in use sends the XML request to the
server and receives the XML response from the server. XML request contains the name of
the function that is being used and all parameters of the function; these parameters can be
either scalar values or objects represented in XML form. XML response contains the name
of the function that is generating this request and the returned value; the returned value can
be either void, or scalar value, or object, or list of objects.

All samples given in this guide contains both XMLs: requests sent to server and responses
received from server. To view XML samples you may need Internet access and web
browser. This section of the guide describes different XML requests and responses that are
being generated during web methods calls.

Sample of XML for Function with Multiple Parameters Sent and List of
Objects Received
Let’s review getSessionDRs function.

This function expects four parameters: offset, limit, filter, order – see Chapter 4: Function
Reference, Section: CDRs Management for details. For instance we would like to run this
function with parameters offset = 0, limit = 3, filter = `created>='2009-10-01' and
conferenceNumber=667788`, and order – empty. To execute this call the XML shown in
Sample of XML Request for Function with Multiple Parameters Sent will be generated.

This function returns the list of SessionDR objects. In our sample it returns 3 objects, the
XML response of this function is shown in Sample of XML Response for Function with
List of Objects Received.

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_Init/Sample_Init.htm

 Web Services API
 Programmer’s Guide
26

Sample of XML for Function with the Object Parameter Sent and the Object
Received
Let’s review createSubscriber function.

This function expects single parameter – the object representing the Subscriber class.
Mandatory subscribers attributes (properties) should be populated in XML. Creating the
subscriber you can also create his conference users simultaneously (in the same function
call) with the subscriber creation (because confusers in the property of the subscriber); to
do so you should populate confusers property of the subscriber class. XML generate for
subscriber and his conference users creation is shown in Sample of XML Request for
Function with the Object Parameter Sent.

This function returns the created Subscriber object. Note that this returned object will not
be the same with the object that was sent to the server: the subscriber identifier, default
attributes values (such as role, etc.), and additional conference users attributes will be
populated in the returned object. The XML response of this function is shown in Sample of
XML Response for Function with the Object Received.

Subscribers Management

Sample of Subscriber and his Conference Accounts Creation
Let’s review the following scenario:
x we need to create the subscriber;
x when we create the subscriber we need to create three conference accounts (conference

users) – the first for moderator, the second for participant, and the third for listener.

To implement this scenario it is necessary to use web method createSubscriber. This
method allows not only creation of subscribers, but this method also can be used to create
conference accounts (conference users) with their attributes that belong to the subscribers.

Click here to see sample of the source code, XML requests and responses, screenshots:
¾ Sample in this document;
¾ Sample on the web (requires Internet access and web browser).

Sample of Subscribers Filtering, Modifications, Conference Accounts
Modifications
Let’s review the following scenario:
x we need to find the subscriber that was created in the previous sample using his pin;
x for the selected subscriber we need to modify his password and email;
x for the selected subscriber we need to remove his conference accounts (conference

users) with the listener role;
x for the selected subscriber we need to define some custom attributes as well as change

access code for his conference accounts with host role.

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.htm

 Web Services API
 Programmer’s Guide
27

To implement this scenario it is necessary to use web methods getSubscribers and
updateSubscriber. The getSubscribers method is used to filter the subscribers based on
different criteria. The updateSubscriber method allows not only modification of subscriber’
properties, but this method also can be used to create, modify or delete conference accounts
(conference users) and conference info with their attributes that belong to this subscriber.
As alternative approach of updating of conference info and their attributes information it is
possible to use updateConferenceInfo method as shown in this sample.

Click here to see sample of the source code, XML requests and responses, screenshots:
¾ Sample in this document;
¾ Sample on the web (requires Internet access and web browser).

Sample of Subscribers Filtering and Deletion
Let’s review the following scenario:
x we need to find out all subscribers who have emails from domain “manage.com”;
x for each of these subscribers if the subscriber does not have phone number we need to

delete him.

To implement this scenario it is necessary to use web methods getSubscribers (to filter the
subscribers) and deleteSubscriber (to delete the selected subscriber).

Click here to see sample of the source code, XML requests and responses, screenshots:
¾ Sample in this document;
¾ Sample on the web (requires Internet access and web browser).

Sample of Getting Conference Users Information
Let’s review the following scenario:
x we need to count conference users (accounts) with for SPECTEL call flow;
x we need to get all conference users (accounts) with for SPECTEL call flow with host

role;
x we need to output subscriber ID, conference number, access code for them.

To implement this scenario it is necessary to use web methods getCallFlows (to filter the
call flows), getDNISes (to filter the DNISes), getConfusersCount (to get the number of
conference users based on criteria) and getConfusers (to filter the conference users based
on criteria).

Click here to see sample of the source code, XML requests and responses, screenshots:
¾ Sample in this document;
¾ Sample on the web (requires Internet access and web browser).

Conferences and Calls Management

Sample of Conferences Filtering, Changes Secure Mode, Dropping the
Conferences
Let’s review the following scenario:

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.htm

 Web Services API
 Programmer’s Guide
28

x we need to count how many conferences are currently on the bridge;
x for the selected subscriber we need to drop all conferences if the participants count less

than two;
x for unsecured conferences for the selected subscriber with two participants we need to

make them secure.

To implement this scenario it is necessary to use web methods getConferencesCount (to get
the number of active conferences based on criteria), getConferences (to filter the
conferences based on different criteria), hangupConference (to hang-up the selected
conference, i.e. to drop all conference calls and terminate the conference),
secureConference (to make the conference secure, i.e. to move the conference into the state
when no new calls are allowed to get in there).

Click here to see sample of the source code, XML requests and responses, screenshots:
¾ Sample in this document;
¾ Sample on the web (requires Internet access and web browser).

Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A
Sessions and Conference Recording
Let’s review the following scenario:
x we need to place the specific conference (the conference with specific conference

number) on hold;
x we need to wait 1 minute and take this conference off hold;
x after that we need to start conference recording and start Q&A session for this

conference;
x we need to wait 1 minute, we assume that conference participants requested to ask

questions during this minute;
x we need to let the first participant ask his question (i.e. un-mute him - engage his Q&A

session);
x we need to wait 1 minute and then complete the first participant question, i.e. disengage

his Q&A session;
x we need to stop Q&A session and stop conference recording for this conference.

To implement this scenario it is necessary to use web methods getConferences (to filter the
conferences based on different criteria), getSessions (to filter the conference calls based on
different criteria), holdConference (to place the conference on hold), unHoldConference (to
take the conference off hold), qaSetMode (to start and stop Q&A session for the
conference; note the this method should used for these purposes starting from version 2.1
only, in version 1.x method muteConference was used), qaEngage (to engage Q&A session
for the conference participant, i.e. to un-mute the participant), qaDisengage (to disengage
Q&A session for the conference participant, i.e. to mute the participant after he asked his
question), startConferenceRecording (to start the conference recording),
stopConferenceRecording (to stop the conference recording).

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.htm

 Web Services API
 Programmer’s Guide
29

Click here to see sample of the source code, XML requests and responses, screenshots:
¾ Sample in this document;
¾ Sample on the web (requires Internet access and web browser).

Sample of Conference Polling Sessions
Let’s review the following scenario:
x we need to start the polling session for the specific conference (the conference with

specific conference number) with available polling options 1, 2, 3;
x we need to wait 1 minute, we assume that conference participants will vote (select one

of the available options) during this minute;
x we need to stop the polling session for this conference;
x after that we need to output polling results.

To implement this scenario it is necessary to use web methods startPolling (to start the
polling for the specified conference with selected options), stopPolling (to stop the polling
for the specific conference), getPollingResults (to get the list of polling results for the
conference).

Click here to see sample of the source code, XML requests and responses, screenshots:
¾ Sample in this document;
¾ Sample on the web (requires Internet access and web browser).

Sample of Calls Filtering, Mute the Calls, Dropping the Calls
Let’s review the following scenario:
x we need to count how many calls are currently on the bridge;
x for the selected subscriber we need to drop all participants calls if the call duration

greater than 10 minutes;
x for remaining participants of the selected subscriber (with call duration less than 10

minutes) we need to mute their calls.

To implement this scenario it is necessary to use web methods getSessionsCount (to get the
number of active calls based on criteria), getSessions (to filter the calls based on different
criteria), hangupSession (to drop/disconnect the specific call), muteSession (to mute the
specific call participant).

Click here to see sample of the source code, XML requests and responses, screenshots:
¾ Sample in this document;
¾ Sample on the web (requires Internet access and web browser).

Sample of Setting Custom Name and Placing Calls on Hold
Let’s review the following scenario:
x for the conference with specific conference number we need to set custom name for the

host “conference moderator”;
x for the same conference we need to place all listeners and participants on hold.

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.htm

 Web Services API
 Programmer’s Guide
30

To implement this scenario it is necessary to use web methods getSessions (to filter the
calls based on different criteria), setCustomName (to set the custom name for the specific
call participant), holdSession (to place the call/participant on hold).

Click here to see sample of the source code, XML requests and responses, screenshots:
¾ Sample in this document;
¾ Sample on the web (requires Internet access and web browser).

CDRs Management

Sample of Getting Conferences Historical Information
Let’s review the following scenario:
x we need to count how many conferences were on the bridge from the beginning of the

month;
x for the selected subscriber we need to output his current month conferences information

(conference number, conference ID, date and time when the conference occurred,
duration, participants count, and info about recording URL if exists), ordered by
conference number and conference date.

To implement this scenario it is necessary to use web methods getConferenceDRsCount (to
return number of ConferenceDRs, i.e. historical conference information, stored in local
CDR database based on criteria), getConferenceDRs (to filter the historical conference
information based on different criteria).

Click here to see sample of the source code, XML requests and responses, screenshots:
¾ Sample in this document;
¾ Sample on the web (requires Internet access and web browser).

Sample of the Shared Recording Generation
In the previous sample (Sample of Getting Conferences Historical Information) we get
conferences with recording. Let’s review the following scenario:
x we need to generate recording URL link, that will allow user to download conference

recording without authorization during the next hour (for the conference with recording
referenced by the conferenceId, that was found in the previous sample);

x we need to output the ConferenceDR object information prior and after shared
recording URL generation to see the differences in the object properties.

To implement this scenario it is necessary to use web methods shareRecording (to generate
shared recording, i.e. recording URL that will be available without authorization) and
getConferenceDR (to get the single historical conference information based on the
conference identifier).

Click here to see sample of the source code, XML requests and responses, screenshots:
¾ Sample in this document;
¾ Sample on the web (requires Internet access and web browser).

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.htm

 Web Services API
 Programmer’s Guide
31

Sample of Getting Calls Historical Information
Let’s review the following scenario:
x we need to count how many calls were on the bridge from the beginning of the month

for the specific conference number;
x for the specific conference number we need to output current month conference calls

information (conference number, conference ID, date and time when the call occurred,
duration, called number, calling number, custom name, disconnect reason;

x if number of calls to output greater than 5, we should implement paging and output 5
calls on the page.

To implement this scenario it is necessary to use web methods getSessionDRsCount (to
return number of SessionDRs, i.e. historical calls/sessions information, stored in local CDR
database based on criteria), getSessionDRs (to filter the historical calls information based
on different criteria).

Click here to see sample of the source code, XML requests and responses, screenshots:
¾ Sample in this document;
¾ Sample on the web (requires Internet access and web browser).

Sample of Historical Calls Filtering
Let’s review the following scenario:
x for the current month we need to output all calls that were connected to the conferences

excluding service calls to the recording server initiated by bridge (for instance we
should output calling number, called number, conference number, conference identifier,
date/time when the call was started, and how long the call was connected to the
conference).

To implement this scenario it is necessary to use web method getSessionDRs and use the
filter that allows to select the requested calls only.

Click here to see sample of the source code, XML requests and responses, screenshots:
¾ Sample in this document;
¾ Sample on the web (requires Internet access and web browser).

Active Speaker Notification
WYDE bridge software has the mechanism allowing finding out who is speaking at the
moment and how loud the person is speaking (i.e. the channel volume). Because this
information should be available very fast (“on-the-fly”), it would be too costly to call web
services each time for these requests. WYDE bridge software uses the lightweight JSON
(JavaScript Object Notation) calls for this purpose.

From the web active talker indicators can be received for one specific conference only. I.e.
WYDE software gives this information not for all active conferences, but for requested
conferences only. To do that it is necessary to implement http request for the URL:
/jsonASN.jsp?conferenceNumber=667788 (where 667788 is the conference number)
As the response you will get JSON-array, for instance:

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.htm
http://en.wikipedia.org/wiki/JSON

 Web Services API
 Programmer’s Guide
32

[
 {"sessionId":"16778157","level":"5"},
 {"sessionId":"16778156","level":"2"}
]

Actually the system shows the loudest four persons and their sound volume. If there was no
any information returned, that means that everybody keeps silent. The sound level could be
from 0 (silence) till 15 (loudest). Note the silence (0) level is not being responded. The
minimum level that could be returned is 1.

Below we show the JavaScript code sample how this mechanism can be implemented. The
sample shows how to get the active speaker notifications.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <script type="text/javascript"
src="http://yui.yahooapis.com/2.8.1/build/yuiloader/yuiloader-min.js"></script>
 <script type="text/javascript"
src="http://yui.yahooapis.com/2.8.1/build/event/event-min.js"></script>
 <script type="text/javascript"
src="http://yui.yahooapis.com/2.8.1/build/dom/dom-min.js"></script>
 <script type="text/javascript"
src="http://yui.yahooapis.com/2.8.1/build/logger/logger-min.js"></script>
 <script type="text/javascript"
src="http://yui.yahooapis.com/2.8.1/build/json/json-debug.js"></script>
 <script type="text/javascript"
src="http://yui.yahooapis.com/2.8.1/build/connection/connection-min.js"></script>
 <script type="text/javascript"
src="http://yui.yahooapis.com/2.8.1/build/element/element-min.js"></script>
 <script type="text/javascript"
src="http://yui.yahooapis.com/2.8.1/build/button/button-min.js"></script>

 <title> ASN Example</title>
 </head>
 <body>
 <div id="demo_msg"></div>

 <script type="text/javascript">

 // Get the div element in which to report messages from the server
 var msg_section = YAHOO.util.Dom.get('demo_msg');
 msg_section.innerHTML = '';

 var callbacks = {
 // Successful XHR response handler
 success : function (o) {
 // Get the div element in which to report messages from the server
 msg_section = YAHOO.util.Dom.get('demo_msg');
 msg_section.innerHTML = '';

 var messages = [];
 // Use the JSON Utility to parse the data returned from the server
 try {
 messages = YAHOO.lang.JSON.parse(o.responseText);
 }

 Web Services API
 Programmer’s Guide
33

 catch (x) {
 alert("JSON Parse failed!");
 return;
 }
 // The returned data was parsed into an array of objects.
 // Add a P element for each received message
 for (var i = 0, len = messages.length; i < len; ++i) {
 var m = messages[i];
 var p = document.createElement('p');
 var message_text =
 document.createTextNode("sessionId="+m.sessionId+",
 level="+m.level);
 p.appendChild(message_text);
 msg_section.appendChild(p);
 }
 }
 };

 function getInfo(conf_number){
 if(conf_number>0) {

YAHOO.util.Connect.asyncRequest('GET',"http://87.246.167.126/jsonASN.jsp?conferen
ceNumber="+conf_number, callbacks);
 }
 }

 </script>

 <label>Enter conference number</label>
 <input type="text" value="" id="conf_number_id"/>
 <input type="button" value="Get info!"
onclick="getInfo(document.getElementById('conf_number_id').value)"/>

 </body>

</html>

Storage Library
Storage is a file manager for WYDE bridge conferences files. It is written as a java web
application. It allows you to display contents of the folders, download the files, upload the
files, as well as perform different files management tasks, including deletion, renaming,
sharing, etc.

Storage application URL is being formed as http://<Wyde bridge domain>/storage/. For
instance the possible Storage file manager URLs could be http://192.168.1.5/storage/.

Storage can be secured with the standard web application security. For this, remove the
comment around the <security-constraint> entry in storage/WEB-INF/web.xml
file and only users in role moderator will have access. Your web.xml file should contain the
following code:
<security-constraint>
 <web-resource-collection>
 <web-resource-name>storage</web-resource-name>
 <url-pattern>/list/*</url-pattern>
 <url-pattern>/ctx/*</url-pattern>
 <url-pattern>/dlf/*</url-pattern>
 <url-pattern>/dlx/*</url-pattern>

 Web Services API
 Programmer’s Guide
34

 </web-resource-collection>

 <auth-constraint>
 <role-name>manager</role-name>
 </auth-constraint>
</security-constraint>

<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>MyRealm</realm-name>
</login-config>

<security-role>
 <role-name>manager</role-name>
</security-role>

Note that MyRealm object should have the specified manager role.

Conference Files Folder Structure and Showing Folder Content
To display the folder content the list option should be used right after the storage portion in
the URL.

Storage always displays the contents of one single folder only.
There are two ways to specify the conference folder:
x Specify conference's folder by the DNIS number and access code of the conference:

o http://<Wyde bridge domain>/storage/list/<dnis number>_<access code>/
for example:
o http://192.168.1.5/storage/list/8665080012_419881/

x Specify conference's folder by the conference number:
o http://<Wyde bridge domain>/storage/list/<conference number>/
for example:
o http://192.168.1.5/storage/list/749932/

Both way are fully equivalent; in both cases the result will be exactly the same. The sample
of the folder content returned using the approach described above is shown in Figure 3. As
you can see file name, file size, file last modification date, relative URL to download the
file, shared/private flag, and sorting order are returned. If the description has been set for
the file the rightmost column contains this file description.

Figure 3: Folder Content Sample

There are three standard folders related to each conference:
x Root folder – contains all files uploaded for this conference:

o http://.../<dnis number>_<access code>/
o http://.../<conference number>/
for example:
o http://192.168.1.5/storage/list/8665080012_419881/
o http://192.168.1.5/storage/list/749932/

x Public folder – contains public files (uploaded or recorded) for this conference:
o http://.../<dnis number>_<access code>/public/

 Web Services API
 Programmer’s Guide
35

o http://.../<conference number>/public/
for example:
o http://192.168.1.5/storage/list/8665080012_419881/public/
o http://192.168.1.5/storage/list/749932/public/

x Recording folder – contains audio recordings available for this conference:
o http://.../<dnis number>_<access code>/recordings/
o http://.../<conference number>/recordings/
for example:
o http://192.168.1.5/storage/list/8665080012_419881/recordings/
o http://192.168.1.5/storage/list/749932/recordings/

The output format for all these folders is the same as it was previously described and shown
on Figure 3.

Note that participants can see files from the public folder only; hosts have access to all
these folders.

File upload
To upload one or several files use the same folder URL: http://<Wyde bridge
domain>/storage/list/<dnis number>_<access code>/ or http://<Wyde bridge
domain>/storage/list/<conference number>/.
The example below illustrates how to upload file to the "upload" folder:
<form action="http://192.168.1.5/storage/list/8665080012_419881/"

method="post" enctype="multipart/form-data">
 <input type="file" name="file" size="30">
 <input type="submit" name="command" value="Upload"/>
</form>

Files management
There are different commands that can be used within the Storage file manager. The name
of the command and one or two possible parameters are being specified in URL query
string fields using traditional web approach:

o http://.../<dnis number>_<access code>/[public/|recordings/]
?index=<file_name>&command=<command:
delete|share|setOrder|setDescription|prepareAudioFile>
[&other_parameter_name=other_parameter_value]

o http://.../<conference number>/[public/|recordings/]
?index=<file_name>&command=<command:
delete|share|setOrder|setDescription|prepareAudioFile>
[&other_parameter_name=other_parameter_value]

In particular, encoding the query string uses the following rules:
x Letters (A-Z and a-z), numbers (0-9) and the characters '.', '-', '~' and '_' are left as-is;
x All other characters are encoded as %FF hex representation (for example SPACE is

encoded as %20, etc.).

There following commands are available in Storage:
x delete – deletes the specified file:

o http://.../?index=<file_name_to_delete>&command=delete

 Web Services API
 Programmer’s Guide
36

for example:
o http://192.168.1.5/storage/list/8665080012_419881/recordings/?index=333456.

mp3&command=delete
o http://192.168.1.5/storage/list/749932/recordings//?index=333456.mp3&comma

nd=delete
x share – shares the specified file:

o http://.../?index=<file_name_to_share>&command=share
for example:
o http://192.168.1.5/storage/list/8665080012_419881/recordings/?index=333456.

mp3&command=share
o http://192.168.1.5/storage/list/749932/recordings//?index=333456.mp3&comma

nd=share
This command works similar to web method shareRecording, but you can share
any file in any available folders. When you share the file the symbolic link to the
specified file is being created in the public sub-folder and this file becomes available for
the user with participant roles. There is no expiration period for such shared file, but
you can remove the sharing simply by deleting of the created symbolic link in the
public sub-folder.
Once the file is shared you can see that the shared/private column value for this
file will be set to shared.

x setOrder – for the specified file sets list order according to the order parameter:
o http://.../?index=<file_name_to_set_order>&command=setOrder&order=<ne

w_order_value>
for example:
o http://192.168.1.5/storage/list/8665080012_419881/recordings/?index=333456.

mp3&command=setOrder&order=3
o http://192.168.1.5/storage/list/749932/recordings/?index=333456.mp3&comma

nd=setOrder&order=3
When you display the folder content you can see the sorting order for each file; default
(i.e. non-defined) sort order is -1. This order is being used to define the order in what
the files are displayed using list URL option. In addition your external application can
use this order to sort the files.

x setDescription – sets the description of the specified file according to the
description parameter:

o http://.../?index=<file_name_to_set_description>&command=setDescription&
description=<new_file_description>

for example:
o http://192.168.1.5/storage/list/8665080012_419881/recordings/?index=333456.

mp3&command=setDescription&description=new%20testing%20description
o http://192.168.1.5/storage/list/749932/recordings/?index=333456.mp3&comma

nd=setDescription&description=new%20testing%20description
Once you changed the description of the file you can see this description in the
rightmost column when you are displaying the folder content.

x prepareAudioFile – checks availability of the specified file and converts it if needed
according to preferred codec:

http://192.168.1.5/storage/list/749932/recordings//?index=333456.mp3&command=share
http://192.168.1.5/storage/list/749932/recordings//?index=333456.mp3&command=share

 Web Services API
 Programmer’s Guide
37

o http://.../?index=<file_name_to_prepare_audio_file>&command=prepareAudi
oFile

for example:
o http://192.168.1.5/storage/list/8665080012_419881/recordings/?index=333456.

mp3&command=prepareAudioFile
o http://192.168.1.5/storage/list/749932/recordings//?index=333456.mp3&comma

nd=prepareAudioFile
This command is used to convert the specified file into preferred codec of your bridge
(for instance .ul or .g722); if needed the file with this extension will be created and as
the result it will be possible to playback this file in the conferences.

 Web Services API
 Programmer’s Guide
38

Chapter 4: Function Reference

Subscribers Management
x getSubscriber (long subscriberId) – Returns full information about the

Subscriber with the given ID.
Parameters:

subscriberId – The Subscriber identifier
Returns:

Subscriber object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x getSubscribers (long offset, long limit, String filter,
String order) – This function returns list of Subscribers that match filter. Offset
and limit allow implementing paging on the web server. Please note that field confusers
in Subscriber will not be populated to avoid huge amount of data to be transferred in
case if big request is processed Subscriber objects.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more Subscriber field names or composite
(compound) statement relative to confuser/conferenceInfo fields names.

 Acceptable operators: <= , >= , != , = , < , > , like *
 For example pin='12' or pin like'%2%' or subscriberId >= 15.
 Empty string or null means no filter.
order - A string specifying Subscriber field name and sort direction.
 For example "pin" or "email desc". The default direction is asc and can be

omitted.
 Empty string or null means no order.
Acceptable fields for filtering and sorting:
 • subscriberId
 • parentId
 • pin
 • password
 • firstName
 • lastName
 • email
 • address1
 • city
 • country
 • phoneNumber
 • confuser.accessCode
 • confuser.confuserId

 Web Services API
 Programmer’s Guide
39

 • confuser.dnisId
 • confuser.role
 • confuser.subscriberId
 • confuser.conferenceInfo.conferenceNumber

Returns:
list of Subscriber objects

Throws Exceptions:
ServerException
AccessDeniedException

x getSubscribersCount (String filter) – Returns count of Subscribers
that match the given filter.
Parameters:

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more Subscriber field names or composite
(compound) statement relative to confuser/conferenceInfo fields names.

 Acceptable operators: <= , >= , != , = , < , > , like
 For example pin='12' or pin like'%2%' or subscriberId >= 15.
Acceptable fields for filtering:
 • subscriberId
 • parentId
 • pin
 • password
 • firstName
 • lastName
 • email
 • address1
 • city
 • country
 • phoneNumber
 • confuser.accessCode
 • confuser.confuserId
 • confuser.dnisId
 • confuser.role
 • confuser.subscriberId
 • confuser.conferenceInfo.conferenceNumber
 Empty string or null means no filter.

Returns:
long count of Subscribers

Throws Exceptions:
ServerException
AccessDeniedException

x createSubscriber (Subscriber subscriber) – Creates a Subscriber. Pay
attention to the list of mandatory fields to be filled in.
Parameters:

subscriber – The Subscriber object

 Web Services API
 Programmer’s Guide
40

Returns:
created Subscriber object

Throws Exceptions:
ServerException
AccessDeniedException
ObjectValidationException

x updateSubscriber (Subscriber subscriber) – Updates a Subscriber
whose ID is presented in s with the information from the structure. Please make sure
you filled all information that needs to be in the updated Subscriber. Recommendation
is to call getSubscriber first, change some info and then call
updateSubscriber.
Parameters:

subscriber – The Subscriber object
Returns:

updated Subscriber object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectValidationException

x deleteSubscriber (long subscriberId) – Deletes a Subscriber with the
given ID and all subordinate Confusers.
Parameters:

subscriberId – The Subscriber identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x generateSubscriberPin () – This function returns unique Subscriber pin with
respect to codes registered on the local server. This function is helpful for
createSubscriber.
Returns:

string Pin Code which is a 6 digit number. For example: 215246.
Throws Exceptions:

ServerException
AccessDeniedException

x generateAccessCode () – This function returns unique access code with respect
to codes registered on the local server. This function is helpful for
createSubscriber and createConfuser.
Returns:

string Access Code which is a 6 digit number. For example: 346217.
Throws Exceptions:

ServerException
AccessDeniedException

 Web Services API
 Programmer’s Guide
41

x generateAccessCodeEx (long digits) – This function returns unique
access code with the length specified by the argument with respect to access codes
registered on the local server. This function is helpful for createSubscriber and
createConfuser.
Parameters:

digits – The length of the generated access code, should be from 1 till 13
Returns:

string Access Code which consists of digits, the length of the access code is
specified by the parameter digits of this function. For example: 481237854 (if
digits=9).

Throws Exceptions:
ServerException
AccessDeniedException

Subscribers’ Conference Users Management
x getConfuser (long confuserId) – This function returns full details about the

Confuser referenced by ID.
Parameters:

confuserId – The Confuser identifier
Returns:

Confuser object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x getConfusers (long offset, long limit, String filter,
String order) – This function returns the list of Confuser which match the given
filter. There are rare cases when this function needs to be called directly as
getSubscriber returns list of subordinate conference users.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more Confuser field names or composite
(compound) statement relative to conferenceInfo field names.

 Acceptable operators: <= , >= , != , = , < , > , like
 For example pin='12' or pin like'%2%' or subscriberId >= 15.
 Empty string or null means no filter.
order - A string specifying Subscriber field name and sort direction.
 For example "pin" or "email desc". The default direction is asc and can be

omitted.
Empty string or null means no order.
Acceptable fields for filtering and sorting:
 • accessCode

 Web Services API
 Programmer’s Guide
42

 • confuserId
 • dnisId
 • role
 • subscriberId
 • conferenceInfo.conferenceNumber

Returns:
list of Confuser objects

Throws Exceptions:
ServerException
AccessDeniedException

x getConfusersCount (String filter) – This function returns number of
Confusers that match the given filter.
Parameters:

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more Confuser field names or composite
(compound) statement relative to conferenceInfo field names.

 Acceptable operators: <= , >= , != , = , < , > , like
 For example accessCode='1001' or subscriberId >= 15.
Acceptable fields for filtering:
 • accessCode
 • confuserId
 • dnisId
 • role
 • subscriberId
 • conferenceInfo.conferenceNumber
Empty string or null means no filter.

Returns:
long count of Confusers

Throws Exceptions:
ServerException
AccessDeniedException

x createConfuser (Confuser confuser) – This function creates a new
Confuser. Please note that you can create Confusers by calling createSubscriber
and providing list of Confusers there.
Parameters:

confuser – The Confuser object
Required fields:
 • subscriberId
 • role
 • dnisId
 • accessCode
 • conferenceInfo

Returns:
created Confuser object

Throws Exceptions:
ServerException

 Web Services API
 Programmer’s Guide
43

AccessDeniedException
ObjectValidationException

x updateConfuser (Confuser confuser) – This function updates Confuser
which is presented in confuser with the information from the structure. Please make
sure you filled all information that needs to be in the updated Confuser.
Recommendation is to call getConfuser first, change some info and then call
updateConfuser.
Parameters:

confuser – The Confuser object
Returns:

updated Confuser object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectValidationException

x deleteConfuser (long confuserId) – This function deletes Confuser
referenced by the ID.
Parameters:

confuserId – The Confuser identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

Conference Info Management
x getConferenceInfos (long offset, long limit, String

filter, String order) – This function returns list of ConfInfo objects which
are registered for the subscriber on which behalf this call is executed. For administrator
it returns list of all registered ConfInfo objects.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more ConfInfo field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example conferenceNumber='12' or conferenceNumber like'%2%'.
Accepted fields:
 • conferenceNumber
 • description
 Empty string or null means no filter.
order - A string specifying ConfInfo field name and sort direction.
 For example "conferenceNumber" or " description desc". The default direction is

asc and can be omitted.

 Web Services API
 Programmer’s Guide
44

 Empty string or null means no order.
Returns:

list of ConfInfo objects
Throws Exceptions:

ServerException
AccessDeniedException

Note:
This function was created in version 2.1 and did not exist in previous versions.

x getConferenceInfosCount (String filter) – Returns number of
ɋonfInfo objects that match the given filter.
Parameters:

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more ɋonfInfo fields names.

 Acceptable operators: <= , >= , != , = , < , > , like
 For example conferenceNumber='12' or conferenceNumber like'%2%'.
Accepted fields:
 • conferenceNumber
 • description
 Empty string or null means no filter.

Returns:
long count of ɋonfInfo objects

Throws Exceptions:
ServerException
AccessDeniedException

Note:
This function was created in version 2.1 and did not exist in previous versions.

x createConferenceInfo (ConfInfo confInfo) – This function creates a
new ConfInfo object. Pay attention to the list of mandatory fields to be filled in.
Parameters:

confInfo – The ConfInfo object
Required fields:
 • conferenceNumber (0 means create a new one – in this case description property

should contain new conference description and new conference number is being generated)
Note: if attributes property is populated only attributes with

isOverridden=true will be saved.
Returns:

created ConfInfo object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectValidationException

Note:
This function was created in version 2.1 and did not exist in previous versions.

x updateConferenceInfo (ConfInfo confInfo) – This function updates an
existing ConfInfo object.

 Web Services API
 Programmer’s Guide
45

Parameters:
confInfo – The ConfInfo object

Returns:
updated ConfInfo object

Throws Exceptions:
ServerException
AccessDeniedException
ObjectValidationException

x deleteConferenceInfo (long conferenceNumber) – This function
deletes ConfInfo object referenced by the conference number and all assigned confusers
(i.e. Confuser objects that refer to this conference number).
Parameters:

conferenceNumber – The conference number
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

Note:
This function was created in version 2.1 and did not exist in previous versions.

Conferences and Calls Management
x getConference (long conferenceId) – This function returns full details

about the Conference referenced by the ID.
Parameters:

conferenceId – The Conference identifier
Returns:

Conference object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x getConferences (long offset, long limit, String filter,
String order) – This function returns list of Conferences which are registered for
the subscriber on which behalf this call is executed.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more Conference field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example conferenceNumber='12' or conferenceNumber like'%2%' or duration

>= 15.
Accepted fields:

 Web Services API
 Programmer’s Guide
46

 • conferenceId
 • conferenceNumber
 • created ('yyyy.MM.dd/hh:mm' format)
 • duration
 • participantCnt
 • isSecured
 • muteMode
 Empty string or null means no filter.
order - A string specifying Conference field name and sort direction.
 For example "conferenceNumber" or "created desc". The default direction is asc

and can be omitted.
 Empty string or null means no order.

Returns:
list of Conference objects

Throws Exceptions:
ServerException
AccessDeniedException

x getConferencesCount (String filter) – This function returns number of
Conferences currently running on the server.
Parameters:

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more Conference field names.

 Acceptable operators: <= , >= , != , = , < , > , like
 For example conferenceNumber='12' or conferenceNumber like'%2%' or duration

>= 15.
Accepted fields:
 • conferenceId
 • conferenceNumber
 • created ('yyyy.MM.dd/hh:mm' format)
 • duration
 • participantCnt
 • isSecured
 • muteMode
 Empty string or null means no filter.

Returns:
long count of Conference objects

Throws Exceptions:
ServerException
AccessDeniedException

x getSession (long sessionId) – This function returns full details about the
call referenced by the ID provided.
Parameters:

sessionId – The Session identifier
Returns:

Session object

 Web Services API
 Programmer’s Guide
47

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x getSessions (long conferenceId, long offset, long limit,
String filter, String order) – This function returns list of Sessions (calls)
which match the filter provided. There are two parameters offset and limit which help
to implement paging on the web application. If this function is called from non admin
Subscribers it will returns only Sessions visible for this account. If call doesn’t present
an access code yet – it is visible only by admin.
Parameters:

conferenceId - Conference identifier. If parameter is less than zero Session objects
for all Conference will be returned.

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more Session field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example addressTo='12' or addressTo like'%2%' or duration >= 15.
Accepted fields:
 • sessionId
 • subscriberId
 • created ('yyyy.MM.dd/hh:mm' format)
 • joined ('yyyy.MM.dd/hh:mm' format) (works only when joined the conference)
 • duration
 • status
 • role (works only when joined the conference)
 • isMuted (works only when joined the conference) true/false values
 • addressTo
 • addressFrom
 • conferenceNumber (works only when joined the conference)
 • accessCode (works only when joined the conference)
 Empty string or null means no filter.
order - A string specifying Session field name and sort direction.
 For example "caller" or "caller desc". The default direction is asc and can be

omitted.
 Empty string or null means no order.

Returns:
list of Session objects

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x getSessionsCount (long conferenceId, String filter) – This
function returns number of calls on the bridge which matches the filter provided.

 Web Services API
 Programmer’s Guide
48

Parameters:
conferenceId - Conference identifier. If parameter is less than zero Session objects

for all Conference will be counted.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more Session field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example caller='12' or caller like'%2%' or duration >= 15.
Accepted fields:
 • sessionId
 • subscriberId
 • created ('yyyy.MM.dd/hh:mm' format)
 • joined ('yyyy.MM.dd/hh:mm' format) (works only when joined the conference)
 • duration
 • status
 • role (works only when joined the conference)
 • isMuted (works only when joined the conference) true/false values
 • addressTo
 • addressFrom
 • conferenceNumber (works only when joined the conference)
 • accessCode (works only when joined the conference)
 Empty string or null means no filter.

Returns:
long count of Session objects

Throws Exceptions:
ServerException
AccessDeniedException

x hangupConference (long conferenceId) – This function causes all calls to
be dropped from the Conference and Conference to be terminated.
Parameters:

conferenceId – The Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x hangupSession (long sessionId) – This function disconnects the call
reference by the ID. If called not from admin account may return NonAuthorised
exception.
Parameters:

sessionId – The Session identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException

 Web Services API
 Programmer’s Guide
49

ObjectNotFoundException
x secureConference (long conferenceId) – This function moves a

Conference referenced by ID into the state when no new calls are allowed to get in
there.
Parameters:

conferenceId – The Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x unSecureConference (long conferenceId) – This function cancels effect
of secureConfernece, i.e. new calls can join the Conference.
Parameters:

conferenceId – The Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x holdConference (long conferenceId) – This function places the
conference on hold.
Parameters:

conferenceId – The Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x unHoldConference (long conferenceId) – This function places the
conference off hold.
Parameters:

conferenceId – The Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x holdSession (long sessionId) – This function places the call on hold.
Parameters:

sessionId – The Session identifier

 Web Services API
 Programmer’s Guide
50

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x unHoldSession (long sessionId) – This function places the call off hold.
Parameters:

sessionId – The Session identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x muteConference (long conferenceId, long mode) – This function
mutes all participants (it doesn’t touch moderators). There are 3 mute modes Open (0) –
this is when all can speak or mute themselves Relaxed (1) – this is when all participants
muted, but they can un-mute themselves Strict (2) – this is when participants cannot un-
mute themselves. If Q&A is enabled they can put themselves into the question queue so
moderator can pick a questioner.
Parameters:

conferenceId – The Conference identifier
mode – The mute mode:

public static long MUTE_MODE_CLOSED = 2L
public static long MUTE_MODE_OPEN = 0L
public static long MUTE_MODE_QUESTION = 1L

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x muteSession (long sessionId) – This function should be called when the
call referenced by ID should be muted.
Parameters:

sessionId – The Session identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x unMuteSession (long sessionId) – This function should be called when the
call referenced by ID should be un-muted.

 Web Services API
 Programmer’s Guide
51

Parameters:
sessionId – The Session identifier

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x setCustomName (long sessionId, String name) – Sets the custom
name of the caller referenced by ID.
Parameters:

sessionId – The Session identifier
name – The custom name of the caller

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x qaEngage (long sessionId) – Engages Q&A session for the conference
participant referenced by ID. This function should be called when the host selected the
call to unmute during the Q&A session.
Parameters:

sessionId – The Session identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x qaDisengage (long sessionId) – Disengages Q&A session for the
conference participant referenced by ID. This function should be called when the host
wants to mute the questioner and remove him from the question queue during Q&A
session.
Parameters:

sessionId – The Session identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x qaEngageNext (long conferneceId) – Enables Q&A session for the first
call in the queue.
Parameters:

conferneceId – The conference identifier

 Web Services API
 Programmer’s Guide
52

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x qaSetMode (long conferenceId, long mode) – Starts, stops or clears
Q&A queue for the specific conference.
Parameters:

conferenceId – The conference identifier
mode – The Q&A conference mode:

public static long QA_MODE_CLOSED = 2L
public static long QA_MODE_OPEN = 0L
public static long QA_MODE_CLEAR = 1L

Note: mode QA_MODE_CLOSED (2L) starts Q&A mode for the conference;
mode QA_MODE_OPEN (0L) stops Q&A mode for the conference; mode
QA_MODE_CLEAR (1L) clears Q&A queue for the conference.

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x qaMuteMode (long conferenceId, long mode) – Mutes or un-mutes
active Q&A session for the specific conference.
Parameters:

conferenceId – The conference identifier
mode – The Q&A active session mode (0 – unmuted, 1 – muted):

public static long MUTE_MODE_OPEN = 0L
public static long MUTE_MODE_RELAXED = 1L

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x startConferenceRecording (long conferenceId) – This function starts
the conference recording.
Parameters:

conferenceId – The Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

 Web Services API
 Programmer’s Guide
53

x stopConferenceRecording (long conferenceId) – This function stops
the conference recording.
Parameters:

conferenceId – The Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x dialout (String phoneNumber, long confuserId, String
attributes) – This function initiates outgoing call to the specified phone number
and tries to connect participant to the specific conference. If the connection is
successful user will be joined to the conference as a conference user specified in
confuserId. Parameter attributes can alter some dial-out logic.
Parameters:

phoneNumber – The phone number to dial-out
confuserId – The identifier of Confuser which role and access code will be used
attributes – The custom attributes (reserved field)

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
ObjectValidationException

x dialoutEx (String phoneNumber, String did, long
conferenceNumber, String accessCode, String attributes) –
This function initiates outgoing call to specified phone number and tries to connect the
participant to the specified conference using the access code provided.
Parameters:

phoneNumber – The phone number to dial-out
did – The bridge phone number the participant has to be connected to
conferenceNumber – The actual conference number
accessCode – The actual access code that should be used to connect to the

conference
attributes – The SIP Header that should be added to the call (or empty string if no

SIP header should be added)
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException
ObjectValidationException

 Web Services API
 Programmer’s Guide
54

x startListen (long conferenceId, long targetId, boolean
muted) – This function directly connects and starts listen/talk the conference
referenced by ID in the second parameter for the operator conference referenced by ID
in the first parameter (the same as *4 on touch tone keypad).
Parameters:

conferenceId – The Operator Conference identifier
targetId – The target Conference identifier (the conference to listen)
muted – The flag represents should the operator be muted (true) or should the

operator be able to talk (false) in the connected conference
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x stopListen (long conferenceId) – This function stops listen the conference
for the operator conference referenced by ID.
Parameters:

conferenceId – The Operator Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x joinConferences (long conferenceId, long targetId) – This
function connects, i.e. joins to the target conference referenced by ID in the second
parameter with the conference referenced by ID in the first parameter; both conferences
will be joined and the callers from these conferences will be able to talk to each other.
Parameters:

conferenceId – The source or Operator Conference identifier to join
targetId – The target Conference identifier to join

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x disconnectConferences (long conferenceId) – This function destroys
the link created between two conference using joinConferences function, i.e. it
disconnects the source or Operator conference and stops talking for this conference
referenced by ID.
Parameters:

conferenceId – The source or Operator Conference identifier
Returns:

void

 Web Services API
 Programmer’s Guide
55

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x startMonitoring (long conferenceId) – This function starts conference
monitoring (surveillance call) for the operator conference referenced by ID (the same as
*1 on touch tone keypad).
Parameters:

conferenceId – The Operator Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

Note:
This function replaces startScan used in version 1.4.

x stopMonitoring (long conferenceId) – This function stops conference
monitoring (surveillance call) for the operator conference referenced by ID.
Parameters:

conferenceId – The Operator Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

Note:
This function replaces stopScan used in version 1.4.

x startTalk (long conferenceId, long sessionId) – This function
starts operator conversation with the user from operator queue; the operator conference
is referenced by the identifier specified in the first parameter, the call session is
referenced by the identifier specified in the second parameter, but if the call session ID
is negative or zero the first user from the operator queue will be taken to start his
conversation with the operator (the same as *2 on touch tone keypad).
Parameters:

conferenceId – The Operator Conference identifier
sessionId – The Session identifier to start talking with the operator or 0 to start

talking with the first user from the queue
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

 Web Services API
 Programmer’s Guide
56

x dropTalk (long conferenceId) – This functions stops current conversation
with the connected user for the operator conference referenced by ID and returns the
user to his conference or ivr (the same as *3 on touch tone keypad); the operator is
ready to process the next user.
Parameters:

conferenceId – The Operator Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x rejectSession (long sessionId) – This functions rejects the specific
session referenced by ID from the operator queue, i.e. the conversion with the user will
be refused and the user will be removed from the operator queue.
Parameters:

sessionId – The Session identifier of the user that should be removed from the
operator queue

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x reattachCall (long sessionId, String did, String
accessCode, long role) – This function attaches the call to the conference.
Parameters:

sessionId – The Session identifier
did – The bridge phone number the participant has to be connected to
accessCode – The actual access code that should be used to connect to the

conference
role – The role (mode) the will be granted to the call in the conference:

public static long MODE_HOST = 1L
public static long MODE_LISTENER = 3L
public static long MODE_PARTICIPANT = 2L
Note if the role can be determined using the access code it has higher priority
than the role.

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x setGainLevel (long sessionId, long level) – Sets the microphone
volume level of the call referenced by ID.

 Web Services API
 Programmer’s Guide
57

Parameters:
sessionId – The Session identifier
level – The microphone volume level, it could be from -10 till 10 or 255; -10 is the

quietest (lowest) sound level, 10 is the loudest (highest) sound level, 255 denotes that the
microphone level is being automatically adjusted by the backend

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

Note:
This function was created in version 2.1 and did not exist in previous versions.

x startPolling (long conferenceId, String keys) – This function
starts polling within specific conference with selected options (the same as #5 on touch
tone keypad).
Parameters:

conferenceId – The conference identifier
keys – Available options (digits 1, 2, ..., 9, 0)

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

Note:
This function was created in version 2.1 and did not exist in previous versions.

x stopPolling (long conferenceId) – This function stops polling within
specific conference referenced by conference number (the same as #5 on touch tone
keypad).
Parameters:

conferenceId – The conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

Note:
This function was created in version 2.1 and did not exist in previous versions.

x getPollingResults (long conferenceId) – This function allows getting
list of polling results for the specific conference referenced by the ID.
Parameters:

conferenceId – The Conference identifier
Returns:

list of PollingResult objects

 Web Services API
 Programmer’s Guide
58

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

Note:
This function was created in version 2.1 and did not exist in previous versions.

Subscribers’ Conferences Management
x getSubscriberConferences (long offset, long limit, String

filter, String order) – This function returns the list of SubscriberConference
objects which match the given filter. Each of subscriber’s conference object represents
subscriber’s conference (either started or not started) and its subscriber information
with up to three conference users (for host, participant, and listener) information
describing this conference.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more SubscriberConference field names or
composite (compound) statement relative to Subscriber and Conferences fields names.

 Acceptable operators: <= , >= , != , = , < , > , like
 For example pin='12' or pin like'%2%' or subscriberId >= 15.
 Empty string or null means no filter.
order - A string specifying SubscriberConference field name and sort direction.
 For example "pin" or "email desc". The default direction is asc and can be

omitted.
Empty string or null means no order.
Subscriber related acceptable fields for filtering and sorting:
 • subscriberId
 • parentId
 • pin
 • password
 • firstName
 • lastName
 • email
 • address1
 • city
 • country
 • phoneNumber
 • confuser.accessCode
 • confuser.confuserId
 • confuser.dnisId
 • confuser.role
 • confuser.subscriberId
 • confuser.conferenceInfo.conferenceNumber

 Web Services API
 Programmer’s Guide
59

 • confuser.dnis.did
Subscriber related acceptable fields for filtering only:
 • hostAccessCode
 • participantAccessCode
 • listenerAccessCode
Conference related acceptable fields for filtering and sorting:
 • conference.conferenceId
 • conference.conferenceNumber
 • conference.created ('yyyy.MM.dd/hh:mm' format)
 • conference.duration
 • conference.participantCnt
 • conference.isSecured
 • conference.muteMode
Please note: all conference filters are being applied to the active conferences only!
Otherwise you can use the confuser.conferenceInfo filters (for example to filter by
the conference number you can use confuser.conferenceInfo.conferenceNumber
field).

Returns:
list of SubscriberConference objects

Throws Exceptions:
ServerException
AccessDeniedException

x getSubscriberConferencesCount (String filter) – This function
returns number of SubscriberConference that match the given filter.
Parameters:

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more SubscriberConference field names or
composite (compound) statement relative to Subscriber and Conferences fields names.

 Acceptable operators: <= , >= , != , = , < , > , like
 For example pin='12' or pin like'%2%' or subscriberId >= 15.
 Empty string or null means no filter.
Subscriber related acceptable fields for filtering and sorting:
 • subscriberId
 • parentId
 • pin
 • password
 • firstName
 • lastName
 • email
 • address1
 • city
 • country
 • phoneNumber
 • confuser.accessCode
 • confuser.confuserId
 • confuser.dnisId

 Web Services API
 Programmer’s Guide
60

 • confuser.role
 • confuser.subscriberId
 • confuser.conferenceInfo.conferenceNumber
 • confuser.dnis.did
 • hostAccessCode
 • participantAccessCode
 • listenerAccessCode
Conference related acceptable fields for filtering and sorting:
 • conference.conferenceId
 • conference.conferenceNumber
 • conference.created ('yyyy.MM.dd/hh:mm' format)
 • conference.duration
 • conference.participantCnt
 • conference.isSecured
 • conference.muteMode
Please note: all conference filters are being applied to the active conferences only!
Otherwise you can use the confuser.conferenceInfo filters (for example to filter by
the conference number you can use confuser.conferenceInfo.conferenceNumber
field).

Returns:
long count of SubscriberConference objects

Throws Exceptions:
ServerException
AccessDeniedException

CDRs Management
x getConferenceDR (long conferenceId) – This function returns full details

about the ConferenceDR referenced by the ID.
Parameters:

conferenceId – The Conference identifier
Returns:

ConferenceDR object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x getConferenceDRs (long offset, long limit, String filter,
String order) – This function returns list of ConferenceDRs which are registered
for the subscriber. For administrator it returns whole list of records.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more ConferenceDR field names.
Acceptable operators: <= , >= , != , = , < , > , like

 Web Services API
 Programmer’s Guide
61

For example:
 conferenceId = 5424
 duration > 300 and duration < 400
 duration > 300 and conferenceNumber = 160
 participantCnt > 2 and participantCnt < 22
 created > '2008.08.07/00:00'
Accepted fields:
 • conferenceId
 • conferenceNumber
 • created ('yyyy.MM.dd/hh:mm' format)
 • duration
 • participantCnt
 Empty string or null means no filter.
order - A string specifying ConferenceDR field name and sort direction.
 For example "conferenceNumber" or "created desc". The default direction is asc

and can be omitted.
 Empty string or null means no order.

Returns:
list of ConferenceDR objects

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x getConferenceDRsCount (String filter) – This function returns number
of ConferenceDRs stored in local CDR db.
Parameters:

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more ConferenceDR field names.

Acceptable operators: <= , >= , != , = , < , > , like
For example:
 conferenceId = 5424
 duration > 300 and duration < 400
 duration > 300 and conferenceNumber = 160
 participantCnt > 2 and participantCnt < 22
 created > '2008.08.07/00:00'
Accepted fields:
 • conferenceId
 • conferenceNumber
 • created ('yyyy.MM.dd/hh:mm' format)
 • duration
 • participantCnt
Empty string or null means no filter.

Returns:
long count of ConferenceDR objects

 Web Services API
 Programmer’s Guide
62

Throws Exceptions:
ServerException
AccessDeniedException

x getSessionDR (long sessionId) – This function returns full details about the
SessionDR referenced by the ID.
Parameters:

sessionId – The Session identifier
Returns:

SessionDR object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x getSessionDRs (long offset, long limit, String filter,
String order) – This function returns list of SessionDRs allowed to view.
Parameters:

offset – zero based offset in recordset.
limit – maximum number of objects to return.
filter – The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more SessionDR field names.
Acceptable operators: <= , >= , != , = , < , > , like
For example:
 conferenceId = 5424
 created > '2008.08.10/00:00' and created < '2008.08.20/00:00'
Accepted fields:
 • conferenceId
 • conferenceNumber
 • created ('yyyy.MM.dd/hh:mm' format)
 • duration
 • role
 • joined
 • customName
 • caller;
 • callee;
 • addressFrom;
 • addressTo;
 • accessCode;
 • disconnectReason;
Empty string or null means no filter.
order – A string specifying SessionDR field name and sort direction.
 For example "created desc". The default direction is asc and can be omitted.
Empty string or null means no order.

Returns:
list of SessionDR objects

 Web Services API
 Programmer’s Guide
63

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x getSessionDRsCount (String filter) – This function returns number of
SessionDRs stored in local CDR db.
Parameters:

filter – The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more SessionDR field names.

Acceptable operators: <= , >= , != , = , < , > , like
For example:
 conferenceId = 5424
 created > '2008.08.10/00:00' and created < '2008.08.20/00:00'
Accepted fields:
 • conferenceId
 • conferenceNumber
 • created ('yyyy.MM.dd/hh:mm' format)
 • duration
 • role
 • joined
 • customName
 • caller;
 • callee;
 • addressFrom;
 • addressTo;
 • accessCode;
 • disconnectReason;
Empty string or null means no filter.

Returns:
long count of SessionDR objects

Throws Exceptions:
ServerException
AccessDeniedException

x getReportSummary (String reportType, String filter) – This
function returns reporting summary information for conferences and calls reports
according to the specified filter. This information includes number of conferences,
number of calls and total calls duration in seconds.
Parameters:

reportType – The type of the report which summary you would like to get; it could
be one of the following values: conferences – for conferences report, i.e. summary data for
getConferenceDRs function will be returned if this reportType is specified; calls – for calls
report, i.e. summary data for getSessionDRs function will be returned if this is reportType
specified.

filter – The criteria to use to filter the report data. The criteria should be a simple sql
conditional statement started with one or more ConferenceDR / SessionDR field names

 Web Services API
 Programmer’s Guide
64

depending on the report type (see detail information for getConferenceDRs and
getSessionDRs functions).

Acceptable operators: <= , >= , != , = , < , > , like
Accepted fields:
 • created ('yyyy.MM.dd/hh:mm' format)
For example:
 created > '2010.11.10/00:00' and created < '2010.11.20/00:00'

Returns:
string report summary information depending on the type of the report –
• conferences

conferences:<number of conferences>;calls:<number of calls joined to
these conferences>;seconds:<total duration of the calls joined to these
conferences in seconds>

• calls
calls:<number of calls>;seconds:<total duration of these calls in seconds>

Throws Exceptions:
ServerException
AccessDeniedException

x getCustomReportRecords (String reportType, long offset,
long limit, String filter, String order) – This function returns the
list of strings; each returned string represents custom report data separated by semicolon
(;) depending on the type of the report – either for DNIS report (dnises) or for
Disconnect report (disconnects) according to the specified filter and in the specified
order. The information returned by this function includes either DNIS numbers, number
of calls and total duration of the calls in seconds for DNIS report or disconnect reasons
and number of disconnects for Disconnect report.
Parameters:

reportType – The type of the report which data you would like to get; it could be
one of the following values: dnises – for DNIS report, i.e. CDR data grouped by DNIS
number will be returned if this reportType is specified; disconnects – for Disconnect report,
i.e. CDR data grouped by the disconnect reason will be returned if this reportType is
specified.

offset – zero based offset in recordset.
limit – maximum number of objects to return.
filter – The criteria to use to filter the report data. The criteria should be a simple sql

conditional statement started with one or more field names depending on the report type
(see detail information below in accepted fields lists).

Acceptable operators: <= , >= , != , = , < , > , like
Accepted fields for both report types:
 • created ('yyyy.MM.dd/hh:mm' format)
 • count
Accepted fields for dnises:
 • dnis
 • duration
Accepted fields for disconnects:
 • disconnectReason

 Web Services API
 Programmer’s Guide
65

For example:
 created > '2010.11.10/00:00' and created < '2010.11.20/00:00'
Note: if you use filter by count, this condition clause should be the last one.
order – A string specifying one of the above mentioned fields names and sort

direction.
 For example "count desc". The default direction is asc and can be omitted.

Returns:
list of strings that represent semicolon-separated custom report information

depending on the type of the report –
• dnises

<DNIS number>;<number of calls to this DNIS number>;<total duration of
the calls to this DNIS number in seconds>

• disconnects
<disconnect reason><number of calls disconnected by this reason>

Throws Exceptions:
ServerException
AccessDeniedException

x getCustomReportRecordsCount (String reportType, String
filter) – This function returns number of the specific custom report records that fit
with the specified filter. If the custom report type is dnises (DNIS report) this function
returns number of different DNIS numbers, if the custom report type is disconnects
(Disconnect report) this function returns number of different disconnect reasons – both
according to the filter that was specified.
Parameters:

reportType – The type of the report which data you would like to calculate; it could
be one of the following values: dnises – for DNIS report, i.e. CDR data grouped by DNIS
number will be counted up if this reportType is specified; disconnects – for Disconnect
report, i.e. CDR data grouped by the disconnect reason will be counted up if this
reportType is specified.

filter – The criteria to use to filter the report data. The criteria should be a simple sql
conditional statement started with one or more field names depending on the report type
(see detail information below in accepted fields lists).

Acceptable operators: <= , >= , != , = , < , > , like
Accepted fields for both report types:
 • created ('yyyy.MM.dd/hh:mm' format)
 • count
Accepted fields for dnises:
 • dnis
 • duration
Accepted fields for disconnects:
 • disconnectReason
For example:
 created > '2010.11.10/00:00' and created < '2010.11.20/00:00'
Note: if you use filter by count, this condition clause should be the last one.

Returns:
long count of the custom report records depending on the type of the report –

 Web Services API
 Programmer’s Guide
66

• dnises
count of different DNIS numbers

• disconnects
count of different disconnect reasons

Throws Exceptions:
ServerException
AccessDeniedException

x listAudioFiles (long conferenceNumber, String pattern) – This
function returns the list of user’s audio files (recordings and uploaded streaming audio-
files) according to the specified pattern and conference number.
Parameters:

conferenceNumber – The conference number (note: it is not conferenceId)
pattern – The filename wildcard pattern

Returns:
list of FileDescriptor objects

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x deleteAudioFiles (long conferenceNumber, String pattern) –
This function deletes user’s audio files (recordings and uploaded streaming audio)
according to the specified pattern and conference number.
Parameters:

conferenceNumber – The conference number (note: it is not conferenceId)
pattern – The filename wildcard pattern
For example:
 deleteAudioFiles(223344, "16777264.*") to delete all audio files for the

conference with the number 223344 and the identifier 16777264)
Returns:

long number of deleted files
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x updateFileDescriptor (long conferenceNumber,
FileDescriptor fileDescriptor) – This function allows to change the file
description only.
Parameters:

conferenceNumber – The conference number (note: it is not conferenceId)
fileDescriptor – The FileDescriptor object (with correct description) to update

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

 Web Services API
 Programmer’s Guide
67

ObjectValidationException
x shareRecording (long conferenceId, DateTime expirePeriod,

boolean allowDownload) – Usually to get access to the recorded conference
files the user should be authorized on the bridge. This function should be used if it is
necessary to generate the link to the conference audio files that will be available without
authorization; this link will be temporary available and it will be valid limited time
only; using this URL any users will be able to listen (download) recording without
authorization. The recorded files URL is stored in the recordingUrl property of the
ConferenceDR object; the shared recorded files URL, created by this function, is stored
in the sharedRecordingUrl property of the ConferenceDR object.
Parameters:

conferenceId – The Conference identifier reference number
expirePeriod – The period of time over which the shared link will be invalidated
allowDownload – The flag showing whether mp3 download is allowed or

disallowed
Returns:

string shared recording URL
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x getDtmfHistory (long sessionId) – This function returns list of DTMF
commands for the specific Session or SessionDR object referenced by the ID.
Parameters:

sessionId – The Session identifier
Returns:

list of DtmfEvent objects
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

Note:
This function was created in version 2.1 and did not exist in previous versions.

x getOperatorsStatistic (long offset, long limit, String
filter, String order) – This function allows getting list of OperatorStatistic
objects. To implement paging you can call it with the proper offset and limit.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more OperatorStatistic field names.
Acceptable operators: <= , >= , != , = , < , > , like
For example:
 created > '2008.08.10/00:00' and created < '2008.08.20/00:00'
Accepted fields:
 • created ('yyyy.MM.dd/hh:mm' format)

 Web Services API
 Programmer’s Guide
68

Empty string or null means no filter.
order - A string specifying OperatorStatistic field name and sort direction.
 For example "created desc". The default direction is asc and can be omitted.
Empty string or null means no order.

Returns:
list of OperatorStatistic objects

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

Note:
This function was created in version 2.1 and did not exist in previous versions.

x getOperatorsStatisticCount (String filter) – This function returns
number of OperatorStatistic objects according to specified filter.
Parameters:

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more OperatorStatistis field names.

Acceptable operators: <= , >= , != , = , < , > , like
For example:
 created > '2008.08.10/00:00' and created < '2008.08.20/00:00'
Accepted fields:
 • created ('yyyy.MM.dd/hh:mm' format)
Empty string or null means no filter.

Returns:
long count of OperatorStatistic objects

Throws Exceptions:
ServerException
AccessDeniedException

Note:
This function was created in version 2.1 and did not exist in previous versions.

Call Flow and DNIS Management
x getCallFlow (long callFlowId) – This function returns full details about the

CallFlow referenced by the ID provided.
Parameters:

callFlowId – The CallFlow identifier
Returns:

CallFlow object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x getCallFlows (long offset, long limit, String filter,
String order) – This function returns list of CallFlows which match the filter
provided. There are two parameters offset and limit to help to implement paging on the

 Web Services API
 Programmer’s Guide
69

web application. All users can get all CallFlows registered on the bridge. Later there
will be introduced a restriction so users are able to see only those CallFlows which are
assigned to them.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more CallFlow field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example name='12' or name like'%2%' or collFlowId >= 15.
Accepted fields:
 • callFlowId
 • name
 • path
 Empty string or null means no filter.
order - A string specifying CallFlow field name and sort direction.
 For example "name" or "name desc". The default direction is asc and can be

omitted.
 Empty string or null means no order.

Returns:
list of CallFlow objects

Throws Exceptions:
ServerException
AccessDeniedException

x getCallFlowsCount (String filter) – This function returns number of
CallFlows on the bridge which match the filter provided.
Parameters:

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more CallFlow field names.

 Acceptable operators: <= , >= , != , = , < , > , like
 For example name='12' or name like'%2%' or collFlowId >= 15.
Accepted fields:
 • callFlowId
 • name
 • path
Empty string or null means no filter.

Returns:
long count of CallFlow objects

Throws Exceptions:
ServerException
AccessDeniedException

x getDNIS (long dnisId) – This function returns full details about the DNIS
referenced by the ID provided.
Parameters:

dnisId – The DNIS identifier

 Web Services API
 Programmer’s Guide
70

Returns:
DNIS object

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x getDNISCount (String filter) – This function returns number of DNISes on
the bridge which match the filter provided.
Parameters:

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more DNIS field names.

 Acceptable operators: <= , >= , != , = , < , > , like
 For example name='12' or name like'%2%' or callFlowId >= 15.
Accepted fields:
 • callFlowId
 • dnisId
 • did
 • description
 Empty string or null means no filter.

Returns:
long count of DNIS objects

Throws Exceptions:
ServerException
AccessDeniedException

x getDNISes (long offset, long limit, String filter, String
order) – This function returns list of DNISes (phone numbers) which match the filter
provided.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more DNIS field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example name='12' or name like'%2%' or callFlowId >= 15.
 Empty string or null means no filter.
order - A string specifying DNIS field name and sort direction.
 For example "name" or "name desc". The default direction is asc and can be

omitted.
Accepted fields:
 • callFlowId
 • dnisId
 • did
 • description
 Empty string or null means no order.

Returns:
list of DNIS objects

 Web Services API
 Programmer’s Guide
71

Throws Exceptions:
ServerException
AccessDeniedException

x updateCallFlow (CallFlow callflow) – The method updates CallFlow
object.
Parameters:

callflow – The CallFlow object
Returns:

updated CallFlow object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectValidationException

x createDNIS (DNIS dnis) – This function creates a new DNIS with the details
specified in the input parameter. Please note that only administrator can create new
DNISes.
Parameters:

dnis – The DNIS object
Returns:

created DNIS object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectValidationException

x updateDNIS (DNIS dnis) – This function updates DNIS with the new
information. Please note that only administrator has a permission to update DNIS.
Parameters:

dnis – The DNIS object
Returns:

updated DNIS object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectValidationException

x deleteDNIS (long dnisId) – This function deletes DNIS referenced by the ID
from the server. When DNIS is being deleted all confusers (conference accounts)
associated with this DNIS also are being deleted. Please note that only administrator has
a permission to delete DNIS.
Parameters:

dnisId – The DNIS identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

 Web Services API
 Programmer’s Guide
72

x getServerAttributes () – This function returns list of system attributes
(settings) registered on the bridge along with the current values, i.e. separate Attribute
Name – Attribute Value pairs.
Returns:

list of attributes (Attribute objects)
Throws Exceptions:

ServerException
AccessDeniedException

x setServerAttributes (Attribute[] attributes) – This function
allows setting new values to the system attributes, i.e. separate Attribute Name –
Attribute Value pairs.
Parameters:

attributes – The list of Attribute objects that need to be updated
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectValidationException

x getAttributesDescription (long callflowId) – This function returns
the collection of Attribute Name – Attribute Description pairs for the specified
CallFlow object (actually the list of allowed attributes with descriptions).
Parameters:

callflowId – The CallFlow identifier
Returns:

list of Attribute Name – Attribute Description pairs
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

Backend and Frontend Services Management
x getVersion () – Returns version of the installed software (like 2.2.290.36 for the

current version).
Returns:

string product version
Throws Exceptions:

ServerException
AccessDeniedException
ObjectValidationException

x getBackendInfo () – Returns some statistic about backend.
Returns:

string status of Backend Service in the textual format

 Web Services API
 Programmer’s Guide
73

Returns Sample:
Welcome to WYDE.MPs admin console 2.2.290.36 compiled Apr 26
2010>Started: Mon Apr 26 16:46:51 2010Call: Now=0; Total=88;
Peak=4; Last=Tue Apr 27 00:01:00 2010Conf: Now=0; Total=40;
Peak=1; Last=Tue Apr 27 00:01:00 2010Brds: Now=1

Throws Exceptions:
ServerException
AccessDeniedException

x getFrontendInfo (String group) – Returns some statistic about frontend.
Parameters:

group – group name, for example cmdcount-show, confcount-show,
errcount-show, partcount-show, etc. (service functions)

Returns:
string status of Frontend Service in the textual format

Throws Exceptions:
ServerException
AccessDeniedException

x isBackendUp () – Returns true if backend is up and running.
Returns:

Boolean true if Backend Service is OK, otherwise – false
Throws Exceptions:

ServerException
AccessDeniedException

x isFrontendUp () – Returns true if frontend is up and running and state can not be
determined.
Returns:

Boolean true if frontend is up and running, otherwise – false
Throws Exceptions:

ServerException
AccessDeniedException

x startBackend () – Tries to start backend with the settings from the DB.
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException

x stopBackend () – Tries to stop backend.
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException

x startFrontend () – Tries to start frontend with the settings from the DB.
Returns:

void

 Web Services API
 Programmer’s Guide
74

Throws Exceptions:
ServerException
AccessDeniedException

x stopFrontend () – Tries to stop frontend.
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException

Exceptions
x ServerException – This exception is thrown to indicate that internal server-side

error occurred.
x AccessDeniedException – This exception is thrown to indicate that a requested

access (to an object or method) is denied. The request access can be denied according to
the security policy.

x ObjectNotFoundException – This exception is thrown to indicate that requested
object can not be found.

x ObjectValidationException – This exception is thrown to indicate that
specified object can not be saved in its current state. Exception contains the collection
of field names that should be checked in fieldname property. There are two possible
reasons: this field is mandatory (if current value is null) or incorrect value.

If any of these exceptions occurred for all these exceptions msg property contains detail
description of the error, i.e. the message that could help to determine the reason of the error.

Constants
x Subscriber

public static int ROLE_ADMIN = 1L
public static int ROLE_OPERATOR = 2L
public static int ROLE_USER = 3L

x Conference
public static long MUTE_MODE_CLOSED = 2L
public static long MUTE_MODE_OPEN = 0L
public static long MUTE_MODE_QUESTION = 1L
public static long QA_MODE_CLOSED = 2L
public static long QA_MODE_OPEN = 0L
public static long QA_MODE_CLEAR = 1L
public static long CONFERENCE_REGULAR = 0L
public static long CONFERENCE_OPERATOR = 1L
public static long CONFERENCE_LISTEN = 2L
public static long CONFERENCE_AUTOLISTEN = 3L
public static long CONFERENCE_AUTOLISTEN_SLEEP = 4L

 Web Services API
 Programmer’s Guide
75

public static long CONFERENCE_TALK = 5L
x Session

public static long MODE_HOST = 1L
public static long MODE_LISTENER = 3L
public static long MODE_PARTICIPANT = 2L
public static long MODE_UNDEFINED = 0L
public static long MODE_DC_LINK = 8L
public static long OPERATOR_STATUS_IDLE = 0L
public static long OPERATOR_STATUS_WAIT = 1L
public static long OPERATOR_STATUS_TALK = 2L
public static long QA_STATUS_ACTIVE = 2L
public static long QA_STATUS_IDLE = 0L
public static long QA_STATUS_RISEDHAND = 1L
public static long STATUS_CLOSED = 3L
public static long STATUS_CONFERENCE = 2L
public static long STATUS_DIALING = 4L
public static long STATUS_IVR = 1L

x SessionDR
public static long INITIATOR_BRIDGE = 2L
public static long INITIATOR_UNDEFINED = 0L
public static long INITIATOR_USER = 1L

x Attribute
public static long TYPE_STRING = 0L
public static long TYPE_BILLINGRULE = 1L
public static long TYPE_INT = 2L
public static long TYPE_DTMF = 3L
public static long TYPE_ROLE = 4L
public static long TYPE_CHOICE = 5L
public static long ROLE_CALLFLOW = 3L
public static long ROLE_CONFERENCE = 1L
public static long ROLE_DNIS = 0L

 Web Services API
 Programmer’s Guide
76

Appendix A: Code Samples

WYDE Web Services Initialization

Sample of WYDE Web Services Initialization
/*
Sample of WYDE Web Services Initialization
*/
using System;
using System.Xml;
using System.Text;
using WYDEWS.jAdmin;

namespace WYDEWS
{
 /// <summary>
 /// Represents base class for the WYDE web services class (jAdmin)
 /// </summary>
 class myJAdmin : jAdmin.jAdmin
 {
 protected override System.Net.WebRequest GetWebRequest(Uri uri)
 {
 System.Net.HttpWebRequest webRequest =

(System.Net.HttpWebRequest)base.GetWebRequest(uri);
 webRequest.ProtocolVersion =
 System.Net.HttpVersion.Version10;
 return webRequest;
 }
 }

 /// <summary>
 /// Represents entire jAdmin web service helper class
 /// </summary>
 public class clsjAdmin
 {
 #region [private fields]
 private myJAdmin ws;
 private String mLastError;
 #endregion

 #region [constructors and destructors]
 /// <summary>
 /// Initializes a new instance of the class (constructor).
 /// </summary>
 public clsjAdmin()
 {
 const String PROC = "clsjAdmin(constructor)";
 String strZone = "";
 try
 {
 // Initialize web service
 strZone = "new myJAdmin()";
 ws = new myJAdmin();

 // WebServiceURL, WebServiceUser, WebServicePassword,
 // WebServiceTimeout parameters: app.config
 strZone = "set web service Url";
 if (!String.IsNullOrEmpty(Utils.AppSettings("WebServiceURL")))
 {
 ws.Url = Utils.AppSettings("WebServiceURL");
 }

 strZone = "new NetworkCredential()";
 if (!String.IsNullOrEmpty(Utils.AppSettings("WebServiceUser")))
 {
 ws.Credentials = new System.Net.NetworkCredential(

 Web Services API
 Programmer’s Guide
77

 Utils.AppSettings("WebServiceUser"),
 Utils.AppSettings("WebServicePassword"));
 }

 strZone = "set web service Timeout";
 if (Utils.Data2Int(Utils.AppSettings("WebServiceTimeout")) > 0)
 {
 ws.Timeout = Utils.Data2Int(Utils.AppSettings("WebServiceTimeout"));
 }

 strZone = "getVersion";
 ws.getVersion(); // Check if initialization was successful
 }
 catch (Exception ex)
 {
 mLastError = "Error in " + this.GetType().FullName + "." +
 PROC + " (" + strZone + "): " + ex.Message;
 }
 }
 /// <summary>
 /// Performs deterministic clean up of the class (destructor).
 /// </summary>
 ~clsjAdmin()
 {
 ws.Dispose();
 }
 #endregion

 #region [properties]
 ///
 #endregion

 #region [private methods]
 ///
 #endregion

 #region [public methods]
 ///
 #endregion
 }
}

 Web Services API
 Programmer’s Guide
78

app.config
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <sectionGroup name="applicationSettings"
type="System.Configuration.ApplicationSettingsGroup, System, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089" >
 <section name="WYDEWS.Properties.Settings"
type="System.Configuration.ClientSettingsSection, System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" requirePermission="false" />
 </sectionGroup>
 </configSections>
 <system.serviceModel>
 <bindings />
 <client />
 </system.serviceModel>
 <appSettings>
 <add key="WebServiceURL" value="http://192.168.1.4/dnca/jAdmin"/>
 <add key="WebServiceUser" value="admin"/>
 <add key="WebServicePassword" value="admin"/>
 <add key="WebServiceTimeout" value="120000"/> <!-- in milliseconds -->
 </appSettings>
 <applicationSettings>
 <WYDEWS.Properties.Settings>
 <setting name="WYDEWS_jAdmin_jAdmin" serializeAs="String">
 <value>http://192.168.1.4/dnca/jAdmin</value>
 </setting>
 </WYDEWS.Properties.Settings>
 </applicationSettings>
</configuration>

 Web Services API
 Programmer’s Guide
79

Web Methods’ XML Requests and Responses

Sample of XML Request for Function with Multiple Parameters Sent
<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <getSessionDRs xmlns="dnca">
 <offset>0</offset>
 <limit>3</limit>
 <filter>created>='2009-10-01' and conferenceNumber=667788</filter>
 <order />
 </getSessionDRs>
 </soap:Body>
</soap:Envelope>

 Web Services API
 Programmer’s Guide
80

Sample of XML Response for Function with List of Objects Received
<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soap:Body>
 <ns1:getSessionDRsResponse xmlns:ns1="dnca">
 <ns1:out>
 <ns2:SessionDR xmlns:ns2="http://data.dnca.datanaut.com">
 <accessCode xmlns="http://data.dnca.datanaut.com"> 11233</accessCode>
 <addressFrom xmlns="http://data.dnca.datanaut.com">

"MZ 2003"<sip:3131@192.168.1.5></addressFrom>
 <addressTo xmlns="http://data.dnca.datanaut.com">

"12_11233" <sip:12_11233@192.168.1.5></addressTo>
 <bridgeName xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
 <callee xmlns="http://data.dnca.datanaut.com">12</callee>
 <caller xmlns="http://data.dnca.datanaut.com">3131</caller>
 <conferenceId xmlns="http://data.dnca.datanaut.com">

39750</conferenceId>
 <conferenceNumber xmlns="http://data.dnca.datanaut.com">

667788</conferenceNumber>
 <created xmlns="http://data.dnca.datanaut.com">

2009-10-30T08:49:08-07:00</created>
 <customName xmlns="http://data.dnca.datanaut.com">

'MZ 2003'</customName>
 <disconnectInitiator xmlns="http://data.dnca.datanaut.com">

1</disconnectInitiator>
 <disconnectReason xmlns="http://data.dnca.datanaut.com">

Normal</disconnectReason>
 <duration xmlns="http://data.dnca.datanaut.com">

91</duration>
 <jobCode xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
 <joined xmlns="http://data.dnca.datanaut.com">

2009-10-30T08:49:10-07:00</joined>
 <nodeName xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
 <role xmlns="http://data.dnca.datanaut.com">1</role>
 <sessionId xmlns="http://data.dnca.datanaut.com">142018</sessionId>
 <subscriberId xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
 </ns2:SessionDR>
 <ns2:SessionDR xmlns:ns2="http://data.dnca.datanaut.com">
 <accessCode xmlns="http://data.dnca.datanaut.com">1233</accessCode>
 <addressFrom xmlns="http://data.dnca.datanaut.com">

"unknown" <sip:192.168.1.9></addressFrom>
 <addressTo xmlns="http://data.dnca.datanaut.com">

"12_1233" <sip:12_1233@192.168.1.5></addressTo>
 <bridgeName xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
 <callee xmlns="http://data.dnca.datanaut.com">12</callee>
 <caller xmlns="http://data.dnca.datanaut.com" />
 <conferenceId xmlns="http://data.dnca.datanaut.com">

39749</conferenceId>
 <conferenceNumber xmlns="http://data.dnca.datanaut.com">

667788</conferenceNumber>
 <created xmlns="http://data.dnca.datanaut.com">

2009-10-30T08:47:38-07:00</created>
 <customName xmlns="http://data.dnca.datanaut.com">

'unknown'</customName>

 Web Services API
 Programmer’s Guide
81

 <disconnectInitiator xmlns="http://data.dnca.datanaut.com">
1</disconnectInitiator>

 <disconnectReason xmlns="http://data.dnca.datanaut.com">
Normal</disconnectReason>

 <duration xmlns="http://data.dnca.datanaut.com">87</duration>
 <jobCode xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
 <joined xmlns="http://data.dnca.datanaut.com">

2009-10-30T08:47:40-07:00</joined>
 <nodeName xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
 <role xmlns="http://data.dnca.datanaut.com">2</role>
 <sessionId xmlns="http://data.dnca.datanaut.com">142017</sessionId>
 <subscriberId xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
 </ns2:SessionDR>
 <ns2:SessionDR xmlns:ns2="http://data.dnca.datanaut.com">
 <accessCode xmlns="http://data.dnca.datanaut.com">1233</accessCode>
 <addressFrom xmlns="http://data.dnca.datanaut.com">

"MZ 2003"<sip:3131@192.168.1.5></addressFrom>
 <addressTo xmlns="http://data.dnca.datanaut.com">

"12_1233" <sip:12_1233@192.168.1.5></addressTo>
 <bridgeName xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
 <callee xmlns="http://data.dnca.datanaut.com">12</callee>
 <caller xmlns="http://data.dnca.datanaut.com">3131</caller>
 <conferenceId xmlns="http://data.dnca.datanaut.com">

39749</conferenceId>
 <conferenceNumber xmlns="http://data.dnca.datanaut.com">

667788</conferenceNumber>
 <created xmlns="http://data.dnca.datanaut.com">

2009-10-30T08:45:49-07:00</created>
 <customName xmlns="http://data.dnca.datanaut.com">

'MZ 2003'</customName>
 <disconnectInitiator

xmlns="http://data.dnca.datanaut.com">1</disconnectInitiator>
 <disconnectReason xmlns="http://data.dnca.datanaut.com">

Normal</disconnectReason>
 <duration xmlns="http://data.dnca.datanaut.com">195</duration>
 <jobCode xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
 <joined xmlns="http://data.dnca.datanaut.com">

2009-10-30T08:45:51-07:00</joined>
 <nodeName xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
 <role xmlns="http://data.dnca.datanaut.com">2</role>
 <sessionId xmlns="http://data.dnca.datanaut.com">142016</sessionId>
 <subscriberId xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
 </ns2:SessionDR>
 </ns1:out>
 </ns1:getSessionDRsResponse>
 </soap:Body>
</soap:Envelope>

 Web Services API
 Programmer’s Guide
82

Sample of XML Request for Function with the Object Parameter Sent
<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <createSubscriber xmlns="dnca">
 <s>
 <address1 xsi:nil="true" xmlns="http://data.dnca.datanaut.com" />
 <address2 xsi:nil="true" xmlns="http://data.dnca.datanaut.com" />
 <city xmlns="http://data.dnca.datanaut.com">New-York</city>
 <confusers xmlns="http://data.dnca.datanaut.com">
 <Confuser>
 <accessCode>201130</accessCode>
 <attributes xsi:nil="true" />
 <conferenceInfo>
 <description>MMC_JKRAFT</description>
 </conferenceInfo>
 <dnisId>19</dnisId>
 <role>1</role>
 </Confuser>
 <Confuser>
 <accessCode>637387</accessCode>
 <attributes xsi:nil="true" />
 <conferenceInfo xsi:nil="true" />
 <dnisId>19</dnisId>
 <role>2</role>
 </Confuser>
 <Confuser>
 <accessCode>451665</accessCode>
 <attributes xsi:nil="true" />
 <conferenceInfo xsi:nil="true" />
 <dnisId>19</dnisId>
 <role>3</role>
 </Confuser>
 </confusers>
 <country xmlns="http://data.dnca.datanaut.com">US</country>
 <details xsi:nil="true" xmlns="http://data.dnca.datanaut.com" />
 <email xmlns="http://data.dnca.datanaut.com">

jkraft@phone-mobile.com</email>
 <firstName xmlns="http://data.dnca.datanaut.com">Julie</firstName>
 <lastName xmlns="http://data.dnca.datanaut.com">Kraft</lastName>
 <password xmlns="http://data.dnca.datanaut.com">321</password>
 <phoneNumber xmlns="http://data.dnca.datanaut.com">

(204) 221-7600</phoneNumber>
 <pin xmlns="http://data.dnca.datanaut.com">jkraft</pin>
 <zip xsi:nil="true" xmlns="http://data.dnca.datanaut.com" />
 </s>
 </createSubscriber>
 </soap:Body>
</soap:Envelope>

 Web Services API
 Programmer’s Guide
83

Sample of XML Response for Function with the Object Received
<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soap:Body>
 <ns1:createSubscriberResponse xmlns:ns1="dnca">
 <ns1:out>
 <address1 xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
 <address2 xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
 <city xmlns="http://data.dnca.datanaut.com">New-York</city>
 <confusers xmlns="http://data.dnca.datanaut.com">
 <Confuser>
 <accessCode>201130</accessCode>
 <attributes>
 <Attribute>
 <enumValues />
 <isOverridden>false</isOverridden>
 <name>call_announceparticipantcount</name>
 <role>1</role>
 <type>0</type>
 <value>hpl</value>
 </Attribute>
 <Attribute>
 <enumValues />
 <isOverridden>false</isOverridden>
 <name>call_exit_dtmf</name>
 <role>1</role>
 <type>0</type>
 <value />
 </Attribute>
 <Attribute>
 <enumValues />
 <isOverridden>false</isOverridden>
 <name>call_instructions_dtmf</name>
 <role>1</role>
 <type>0</type>
 <value>hp</value>
 </Attribute>
 <Attribute>
 <enumValues />
 <isOverridden>false</isOverridden>
 <name>call_mute_dtmf</name>
 <role>1</role>
 <type>0</type>
 <value>hp</value>
 </Attribute>
 <Attribute>
 <enumValues />
 <isOverridden>false</isOverridden>
 <name>call_operator_dtmf</name>
 <role>1</role>
 <type>0</type>
 <value />
 </Attribute>
 <Attribute>
 <enumValues />

 Web Services API
 Programmer’s Guide
84

 <isOverridden>false</isOverridden>
 <name>call_participantsnumber_dtmf</name>
 <role>1</role>
 <type>0</type>
 <value>hp</value>
 </Attribute>
 <Attribute>
 <enumValues>on,off</enumValues>
 <isOverridden>false</isOverridden>
 <name>conference_callerdb</name>
 <role>1</role>
 <type>0</type>
 <value>off</value>
 </Attribute>
 <Attribute>
 <enumValues />
 <isOverridden>false</isOverridden>
 <name>conference_dialout_dtmf</name>
 <role>1</role>
 <type>0</type>
 <value>h</value>
 </Attribute>
 <Attribute>
 <enumValues />
 <isOverridden>false</isOverridden>
 <name>conference_entryexittones_dtmf</name>
 <role>1</role>
 <type>0</type>
 <value />
 </Attribute>
 <Attribute>
 <enumValues>on,off</enumValues>
 <isOverridden>false</isOverridden>
 <name>conference_entrytones</name>
 <role>1</role>
 <type>0</type>
 <value>on</value>
 </Attribute>
 <Attribute>
 <enumValues>on,off</enumValues>
 <isOverridden>false</isOverridden>
 <name>conference_exittones</name>
 <role>1</role>
 <type>0</type>
 <value>on</value>
 </Attribute>
 <Attribute>
 <enumValues>false,true</enumValues>
 <isOverridden>false</isOverridden>
 <name>conference_hold_participant</name>
 <role>1</role>
 <type>0</type>
 <value>false</value>
 </Attribute>
 <Attribute>
 <enumValues />
 <isOverridden>false</isOverridden>
 <name>conference_lock_dtmf</name>
 <role>1</role>

 Web Services API
 Programmer’s Guide
85

 <type>0</type>
 <value>h</value>
 </Attribute>
 <Attribute>
 <enumValues />
 <isOverridden>false</isOverridden>
 <name>conference_maxcalls</name>
 <role>1</role>
 <type>2</type>
 <value>-1</value>
 </Attribute>
 <Attribute>
 <enumValues />
 <isOverridden>false</isOverridden>
 <name>conference_moh</name>
 <role>1</role>
 <type>0</type>
 <value>default</value>
 </Attribute>
 <Attribute>
 <enumValues />
 <isOverridden>false</isOverridden>
 <name>conference_mute_dtmf</name>
 <role>1</role>
 <type>0</type>
 <value>h</value>
 </Attribute>
 <Attribute>
 <enumValues>open,relaxed,strict</enumValues>
 <isOverridden>false</isOverridden>
 <name>conference_mute_listener</name>
 <role>1</role>
 <type>0</type>
 <value>strict</value>
 </Attribute>
 <Attribute>
 <enumValues />
 <isOverridden>false</isOverridden>
 <name>conference_qa_dtmf</name>
 <role>1</role>
 <type>0</type>
 <value>h</value>
 </Attribute>
 <Attribute>
 <enumValues>on,off</enumValues>
 <isOverridden>false</isOverridden>
 <name>conference_realtime</name>
 <role>1</role>
 <type>0</type>
 <value>off</value>
 </Attribute>
 <Attribute>
 <enumValues>first,moderator</enumValues>
 <isOverridden>false</isOverridden>
 <name>conference_start_how</name>
 <role>1</role>
 <type>0</type>
 <value>first</value>
 </Attribute>

 Web Services API
 Programmer’s Guide
86

 <Attribute>
 <enumValues />
 <isOverridden>false</isOverridden>
 <name>conference_start_wait</name>
 <role>1</role>
 <type>2</type>
 <value>300</value>
 </Attribute>
 <Attribute>
 <enumValues>last,moderator</enumValues>
 <isOverridden>false</isOverridden>
 <name>conference_stop_how</name>
 <role>1</role>
 <type>0</type>
 <value>last</value>
 </Attribute>
 <Attribute>
 <enumValues />
 <isOverridden>false</isOverridden>
 <name>conference_stop_wait</name>
 <role>1</role>
 <type>2</type>
 <value>0</value>
 </Attribute>
 <Attribute>
 <enumValues />
 <isOverridden>false</isOverridden>
 <name>recording_dtmf</name>
 <role>1</role>
 <type>0</type>
 <value>h</value>
 </Attribute>
 <Attribute>
 <enumValues>last,moderator</enumValues>
 <isOverridden>false</isOverridden>
 <name>recording_stop_how</name>
 <role>1</role>
 <type>0</type>
 <value>last</value>
 </Attribute>
 <Attribute>
 <enumValues />
 <isOverridden>false</isOverridden>
 <name>recording_stop_wait</name>
 <role>1</role>
 <type>2</type>
 <value>0</value>
 </Attribute>
 </attributes>
 <conferenceInfo>
 <description>MMC_JKRAFT</description>
 <conferenceNumber>916551</conferenceNumber>
 </conferenceInfo>
 <confuserId>45</confuserId>
 <dnisId>19</dnisId>
 <role>1</role>
 <subscriberId>26</subscriberId>
 </Confuser>
 <Confuser>

 Web Services API
 Programmer’s Guide
87

 <accessCode>637387</accessCode>
 <attributes />
 <conferenceInfo>
 <description>MMC_JKRAFT</description>
 <conferenceNumber>916551</conferenceNumber>
 </conferenceInfo>
 <confuserId>44</confuserId>
 <dnisId>19</dnisId>
 <role>2</role>
 <subscriberId>26</subscriberId>
 </Confuser>
 <Confuser>
 <accessCode>451665</accessCode>
 <attributes />
 <conferenceInfo>
 <description>MMC_JKRAFT</description>
 <conferenceNumber>916551</conferenceNumber>
 </conferenceInfo>
 <confuserId>46</confuserId>
 <dnisId>19</dnisId>
 <role>3</role>
 <subscriberId>26</subscriberId>
 </Confuser>
 </confusers>
 <country xmlns="http://data.dnca.datanaut.com">US</country>
 <created xmlns="http://data.dnca.datanaut.com">

2009-10-12T00:00:00-07:00</created>
 <details xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
 <email xmlns="http://data.dnca.datanaut.com">

jkraft@phone-mobile.com</email>
 <firstName xmlns="http://data.dnca.datanaut.com">Julie</firstName>
 <lastName xmlns="http://data.dnca.datanaut.com">Kraft</lastName>
 <parentId xmlns="http://data.dnca.datanaut.com">1</parentId>
 <password xmlns="http://data.dnca.datanaut.com">321</password>
 <phoneNumber xmlns="http://data.dnca.datanaut.com">

(204) 221-7600</phoneNumber>
 <pin xmlns="http://data.dnca.datanaut.com">jkraft</pin>
 <role xmlns="http://data.dnca.datanaut.com">3</role>
 <subscriberId xmlns="http://data.dnca.datanaut.com">26</subscriberId>
 <zip xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
 </ns1:out>
 </ns1:createSubscriberResponse>
 </soap:Body>
</soap:Envelope>

 Web Services API
 Programmer’s Guide
88

Subscribers Management

Sample of Subscriber and his Conference Accounts Creation
(Sample_ManageSubscriber1)
/*
Sample of Subscriber and his Conference Accounts Creation

Let’s review the following scenario:
• we need to create the subscriber;
• when we create the subscriber we need to create three conference accounts
 (conference users) – the first for moderator, the second for participant,
 and the third for listener.
*/
public void Sample_ManageSubscriber1()
{
 // Declare constants
 const int MODE_HOST = 1; // Moderator
 const int MODE_PARTICIPANT = 2;
 const int MODE_LISTENER = 3;
 const String DNIS = "12"; // We use this DNIS number for sample purposes,
 // please use your DNIS number here
 // Declare variables
 Subscriber newSubscriber;
 Subscriber createdSubscriber;
 Confuser moderatorConfuser;
 Confuser participantConfuser;
 Confuser listenerConfuser;
 DNIS[] dnises;
 long dnisId;
 String generatedAccessCode;

 try
 {
 mLastError = "";

 // Create new instance of Subscriber object (to populate new subscriber fields)
 newSubscriber = new Subscriber();

 // Define all mandatory fields and some optional fields
 newSubscriber.pin = "jkraft";
 newSubscriber.password = "321";
 newSubscriber.city = "New-York";
 newSubscriber.country = "US";
 newSubscriber.email = "jkraft@phone-mobile.com";
 newSubscriber.firstName = "Julie";
 newSubscriber.lastName = "Kraft";
 newSubscriber.phoneNumber = "(204) 221-7600";
 // For instance, we do not want to define additional optional properties,
 // such as newOperatorSubscriber.address1, newOperatorSubscriber.address2, etc.

 // Find DNIS 12 (SPECTEL)
 // Note. In this sample we create sample for DNIS 12 (SPECTEL),
 // you can use your DNIS to create your conference accounts
 dnises = ws.getDNISes(0, 0, "did=" + DNIS, null);
 // XML that was sent to the server see here:
 // Sample_ManageSubscriber1.getDNISes.12_sent.xml
 // XML that was received from the server see here:
 // Sample_ManageSubscriber1.getDNISes.12_received.xml
 if (dnises != null && dnises.Length > 0)
 {
 // Create conference users only if the requested DNIS was found
 dnisId = dnises[0].dnisId; // The ID of DNIS

 // Create new instance and populate Confuser object for the moderator role
 generatedAccessCode = ws.generateAccessCode(); // Generate access code
 // XML that was sent to the server see here:
 // Sample_ManageSubscriber1.generateAccessCode.sent.xml

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.getDNISes.12_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.getDNISes.12_received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.generateAccessCode.sent.xml

 Web Services API
 Programmer’s Guide
89

 // XML that was received from the server see here:
 // Sample_ManageSubscriber1.generateAccessCode.received.xml

 /*
 * Programmers notes.
 When we create new conference users (either using createConfuser or
 createSubscriber methods) if conferenceInfo.conferenceNumber == 0 and
 conferenceInfo.description != null, the new ConfInfo object will be created,
 new unique 6-digits conference number will be
 assigned to this ConfInfo object. The created object can be used in new
 conference users creation.
 If when we create the subscriber only one confuser has not null
 conferenceInfo, one new conference number (conference info) will be created
 and all other conference users (where conferenceInfo is null) will be created
 and assigned to this conference info.
 In the sample below we define conferenceInfo for the moderator confuser only;
 because we do not define conferenceInfo for the participant and the listener
 confuser they will be assigned to the same conference number (conferenceInfo)
 that will be created for the moderator.
 */
 moderatorConfuser = new Confuser();
 moderatorConfuser.accessCode = generatedAccessCode;
 moderatorConfuser.dnisId = dnisId;
 moderatorConfuser.conferenceInfo = new ConfInfo();
 moderatorConfuser.conferenceInfo.description = "MMC_JKRAFT";
 moderatorConfuser.dnisIdSpecified = true;
 moderatorConfuser.role = MODE_HOST;
 moderatorConfuser.roleSpecified = true;
 /*
 * Programmers notes.
 If you are coding on C# or VB.Net in some cases client web services proxy
 code can generate additional parameter <property>Specified (Boolean type).
 This behavior is by design. The issue is with value types that are marked in
 the WSDL as not being required. Since they are value types, they can't
 return. The solution that Microsoft implemented was to add a separate Boolean
 field or property you can set to say whether or not you are supplying the
 value.
 This means that when your .NET application wants to call web service, it needs
 to set the <property>Specified property. This property is not included into XML
 that will be sent to server, but it is used to generate this XML.
 dnisIdSpecified, roleSpecified - are samples of such properties.
 */

 // Create new instance and populate Confuser object for the participant role
 generatedAccessCode = ws.generateAccessCode();

 participantConfuser = new Confuser();
 participantConfuser.accessCode = generatedAccessCode;
 participantConfuser.dnisId = dnisId;
 participantConfuser.dnisIdSpecified = true;
 participantConfuser.role = MODE_PARTICIPANT;
 participantConfuser.roleSpecified = true;

 // Create new instance and populate Confuser object for the listener role
 generatedAccessCode = ws.generateAccessCode();

 listenerConfuser = new Confuser();
 listenerConfuser.accessCode = generatedAccessCode;
 listenerConfuser.dnisId = dnisId;
 listenerConfuser.dnisIdSpecified = true;
 listenerConfuser.role = MODE_LISTENER;
 listenerConfuser.roleSpecified = true;

 // Add moderator and participant conference users to new subscribers
 // that should be created
 newSubscriber.confusers = new Confuser[3];
 newSubscriber.confusers.SetValue(moderatorConfuser, 0);
 newSubscriber.confusers.SetValue(participantConfuser, 1);
 newSubscriber.confusers.SetValue(listenerConfuser, 2);
 }

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.generateAccessCode.received.xml

 Web Services API
 Programmer’s Guide
90

 // Call web service method createSubscriber (to create new subscriber)
 // and his conference accounts
 createdSubscriber = ws.createSubscriber(newSubscriber);
 // XML that was sent to the server see here:
 // Sample_ManageSubscriber1.createSubscriber.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageSubscriber1.createSubscriber.received.xml
 // Screenshot of new created subscriber see here:
 // Sample_ManageSubscriber1.createSubscriber.jpg

 return;
 }
 catch (Exception ex)
 {
 mLastError = "Error in " + this.GetType().FullName +
 ".Sample_ManageSubscriber1: " + ex.Message;
 }
}

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.createSubscriber.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.createSubscriber.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.createSubscriber.jpg

 Web Services API
 Programmer’s Guide
91

Sample of Subscribers Filtering, Modifications, Conference Accounts
Modifications (Sample_ManageSubscriber2)
/*
Sample of Subscribers Filtering, Modifications, Conference Accounts Modifications
Let’s review the following scenario:
• we need to find the subscriber that was created in the previous sample using his pin;
• for the selected subscriber we need to modify his password and email;
• for the selected subscriber we need to remove his conference accounts (conference users)
 with the listener role;
• for the selected subscriber we need to define some custom attributes as well as change
 access code for his conference accounts with host role.
*/
public void Sample_ManageSubscriber2()
{
 // Declare constants
 const int MODE_HOST = 1; // Moderator
 const int MODE_PARTICIPANT = 2;
 const int MODE_LISTENER = 3;
 // Declare variables
 Subscriber[] listSubscribers;
 Subscriber userSubscriber;
 Confuser currentConfuser;
 Confuser[] moderatorConfusers;
 ConfInfo currentConfInfo = null;
 int confusersCount;
 String generatedAccessCode;

 try
 {
 mLastError = "";

 // Find jkraft subscriber (created in previous sample)
 listSubscribers = ws.getSubscribers(0, 0, "pin='jkraft'", "");
 // XML that was sent to the server see here:
 // Sample_ManageSubscriber2.getSubscribers.pin_sent.xml
 // XML that was received from the server see here:
 // Sample_ManageSubscriber2.getSubscribers.pin_received.xml
 /*
 List<Subscriber> getSubscribers(long offset,
 long limit,
 String filter,
 String order)
 throws ServerException,
 AccessDeniedException
 * This function returns list of Subscribers that match filter.
 * Offset and limit allow to implement paging on the web server.
 * Please note that field confusers in Subscriber will not be populated to avoid huge
 * amount of data to be transferred in case if big request is processed.
 * Parameters:
 offset - zero based offset in recordset.
 limit - maximum number of objects to return.
 filter - The criteria to use to filter the rows. The criteria should be a simple sql
 conditional statement started with one or more Subscriber field names.
 Acceptable operators: <= , >= , != , = , < , > , like *
 For example login='12' or login like'%2%' or subscriberId >= 15.
 Empty string or null means no filter.
 order - A string specifying Subscriber field name and sort direction.
 For example "login" or "email desc". The default direction
 is asc and can be omitted. Empty string or null means no order.
 * Acceptable fields:
 •subscriberId
 •parentId
 •pin
 •password
 •firstName
 •lastName
 •email

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.getSubscribers.pin_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.getSubscribers.pin_received.xml

 Web Services API
 Programmer’s Guide
92

 •address1
 •city
 •country
 •phoneNumber
 * Returns:
 list of Subscriber objects
 */
 if (listSubscribers != null && listSubscribers.Length > 0)
 {
 /*
 * Programmers notes.
 Because getSubscribers method returns only the list of subscribers with their basic
 attributes and does not return conferenceInfo attributes property, we need to call
 getSubscriber method for the subscriber that was found to get his complete set of
 attributes
 */
 userSubscriber = ws.getSubscriber(listSubscribers[0].subscriberId);
 // XML that was sent to the server see here:
 // Sample_ManageSubscriber2.getSubscriber.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageSubscriber2.getSubscriber.received.xml

 userSubscriber.password = "654321";
 userSubscriber.email = "jkraft@manage.com";

 if (userSubscriber.confusers != null)
 {
 confusersCount = 0;
 for (int idx = 0; idx < userSubscriber.confusers.Length; idx++)
 {
 currentConfuser = userSubscriber.confusers[idx];

 if (currentConfuser.role == MODE_HOST)
 {
 generatedAccessCode = ws.generateAccessCode(); // Generate new access code
 currentConfuser.accessCode = generatedAccessCode;
 currentConfInfo = currentConfuser.conferenceInfo;
 confusersCount++;
 }
 else if (currentConfuser.role == MODE_PARTICIPANT)
 {
 confusersCount++;
 }
 else if (currentConfuser.role == MODE_LISTENER)
 {
 userSubscriber.confusers[idx] = null;
 }
 }
 moderatorConfusers = new Confuser[confusersCount];
 confusersCount = 0;
 for (int idx = 0; idx < userSubscriber.confusers.Length; idx++)
 {
 if (userSubscriber.confusers[idx] != null)
 {
 moderatorConfusers.SetValue(userSubscriber.confusers[idx], confusersCount);
 confusersCount++;
 }
 }
 userSubscriber.confusers = moderatorConfusers;
 }
 // Call web service method updateSubscriber (to modify existing subscriber)
 ws.updateSubscriber(userSubscriber);
 // XML that was sent to the server see here:
 // Sample_ManageSubscriber2.updateSubscriber.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageSubscriber2.updateSubscriber.received.xml

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.getSubscriber.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.getSubscriber.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateSubscriber.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateSubscriber.received.xml

 Web Services API
 Programmer’s Guide
93

 // Define custom attributes for subscriber's conference info
 if (currentConfInfo != null)
 {
 foreach (jAdmin.Attribute attr in currentConfInfo.attributes)
 {
 if (attr.name == "conference_entrytones")
 {
 attr.value = "off";
 attr.isOverridden = true;
 attr.isOverriddenSpecified = true;
 }
 if (attr.name == "conference_exittones")
 {
 attr.value = "off";
 attr.isOverridden = true;
 attr.isOverriddenSpecified = true;
 }
 if (attr.name == "conference_start_wait")
 {
 attr.value = "500";
 attr.isOverridden = true;
 attr.isOverriddenSpecified = true;
 }
 }
 // Call web service method updateSubscriber (to modify existing subscriber)
 ws.updateConferenceInfo(currentConfInfo);
 // XML that was sent to the server see here:
 // Sample_ManageSubscriber2.updateConferenceInfo.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageSubscriber2.updateConferenceInfo.received.xml
 }

 // Screenshot of updated subscriber see here:
 // Sample_ManageSubscriber2.updateSubscriber.jpg
 // Screenshot of updated subscriber’s conference account see here:
 // Sample_ManageSubscriber2.updateSubscriber_confuser.jpg
 }

 return;
 }
 catch (Exception ex)
 {
 mLastError = "Error in " + this.GetType().FullName +
 ".Sample_ManageSubscriber2: " + ex.Message;
 }
}

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateConferenceInfo.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateConferenceInfo.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateSubscriber.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateSubscriber_confuser.jpg

 Web Services API
 Programmer’s Guide
94

Sample of Subscribers Filtering and Deletion (Sample_ManageSubscriber3)
/*
Sample of Subscribers Filtering and Deletion
Let’s review the following scenario:
• we need to find out all subscribers who have emails from domain “manage.com”;
• for each of these subscribers if the subscriber does not have phone number
 we need to delete him.
*/
public void Sample_ManageSubscriber3()
{
 // Declare variables
 Subscriber[] listSubscribers;

 try
 {
 mLastError = "";

 // Find all subscribers who have emails from domain “manage.com”
 listSubscribers = ws.getSubscribers(0, 0, "email like'%@manage.com%'", "");
 // XML that was sent to the server see here:
 // Sample_ManageSubscriber3.getSubscribers.email_sent.xml
 // XML that was received from the server see here:
 // Sample_ManageSubscriber3.getSubscribers.email_received.xml
 // See screenshot of the subscribers filtered by email
 // that were on the bridge prior to the program start:
 // Sample_ManageSubscriber3.subscribers_before.jpg

 if (listSubscribers != null)
 {
 foreach (Subscriber s in listSubscribers)
 {
 if (String.IsNullOrEmpty(s.phoneNumber))
 {
 // Delete the subscriber
 ws.deleteSubscriber(s.subscriberId);
 // XML that was sent to the server see here:
 // Sample_ManageSubscriber3.deleteSubscriber.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageSubscriber3.deleteSubscriber.received.xml
 }
 }
 }
 // See screenshot of the subscribers filtered by email
 // that were on the bridge after the program is finished:
 // Sample_ManageSubscriber3.subscribers_after.jpg

 return;
 }
 catch (Exception ex)
 {
 mLastError = "Error in " + this.GetType().FullName +
 ".Sample_ManageSubscriber3: " + ex.Message;
 }
}

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.getSubscribers.email_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.getSubscribers.email_received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.subscribers_before.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.deleteSubscriber.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.deleteSubscriber.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.subscribers_after.jpg

 Web Services API
 Programmer’s Guide
95

Sample of Getting Conference Users Information (Sample_ManageConfuser1)
/*
Sample of Getting Conference Users Information
Let’s review the following scenario:
• we need to count conference users (accounts) with for SPECTEL call flow;
• we need to get all conference users (accounts) with for SPECTEL call flow
 with host role;
• we need to output subscriber ID, conference number, access code for them.
*/
public String Sample_ManageConfuser1()
{
 // Declare constants
 const int MODE_HOST = 1; // Moderator
 // Declare variables
 long lngConfusersCount;
 CallFlow[] callFlows;
 DNIS[] dnises;
 Confuser[] confusers;
 String dnisIDs = ",";
 String strInfo;

 try
 {
 mLastError = "";
 strInfo = "";

 // Get requested call flow by name
 callFlows = ws.getCallFlows(0, 0, "name='SPECTEL'", "");
 // XML that was sent to the server see here:
 // Sample_ManageConfuser1.getCallFlows.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConfuser1.getCallFlows.received.xml
 /*
 List<CallFlow> getCallFlows(long offset,
 long limit,
 java.lang.String filter,
 java.lang.String order)
 throws ServerException,
 AccessDeniedException
 * This function returns list of CallFlows which match the filter provided.
 * There are two parameters offset and limit to help to implement paging on the web
 * application. All users can get all CallFlows registered on the bridge. Later there
 * will be introduced a restriction so users are able to see only those CallFlows which
 * are assigned to them.
 * Parameters:
 offset - zero based offset in recordset.
 limit - maximum number of objects to return.
 filter - The criteria to use to filter the rows. The criteria should be a simple sql
 conditional statement started with one or more CallFlow field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example name='12' or name like'%2%' or collFlowId >= 15.
 Empty string or null means no filter.
 order - A string specifying CallFlow field name and sort direction.
 For example "name" or "name desc". The default direction is asc and can be omitted.
 Empty string or null means no order.
 * Accepted fields:
 •callFlowId
 •name
 •path
 * Returns:
 list of CallFlow objects
 */
 if (callFlows != null && callFlows.Length > 0)
 {
 // Get DNISes for the selected call flow
 dnises = ws.getDNISes(0, 0, "callFlowId=" + callFlows[0].callFlowId.ToString(), "");
 // XML that was sent to the server see here:

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getCallFlows.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getCallFlows.received.xml

 Web Services API
 Programmer’s Guide
96

 // Sample_ManageConfuser1.getDNISes.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConfuser1.getDNISes.received.xml
 /*
 List<DNIS> getDNISes(long offset,
 long limit,
 java.lang.String filter,
 java.lang.String order)
 throws ServerException,
 AccessDeniedException
 * This function returns list of DNISes (phone numbers) which match the filter
 * provided. There are two parameters offset and limit to help to implement paging on
 * the web application. All users can get all numbers registered on the bridge.
 * Parameters:
 offset - zero based offset in recordset.
 limit - maximum number of objects to return.
 filter - The criteria to use to filter the rows. The criteria should be a simple
 sql conditional statement started with one or more DNIS field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example name='12' or name like'%2%' or collFlowId >= 15.
 Empty string or null means no filter.
 order - A string specifying DNIS field name and sort direction.
 For example "name" or "name desc".
 The default direction is asc and can be omitted.
 Empty string or null means no order.
 * Accepted fields:
 •callFlowId
 •dnisId
 •did
 •description
 * Returns:
 list of DNIS objects
 */
 if (dnises != null && dnises.Length > 0)
 {
 foreach (DNIS d in dnises)
 {
 if (dnisIDs.IndexOf("," + d.dnisId.ToString() + ",") < 0)
 {
 dnisIDs += d.dnisId.ToString() + ",";
 }
 }

 if (dnisIDs.Length <= 2)
 {
 dnisIDs = "";
 }
 else
 {
 if (Utils.LeftString(dnisIDs, 1) == ",")
 dnisIDs = dnisIDs.Substring(1);
 if (Utils.RightString(dnisIDs, 1) == ",")
 dnisIDs = Utils.LeftString(dnisIDs, dnisIDs.Length - 1);
 }

 if (!String.IsNullOrEmpty(dnisIDs))
 {
 // Count how many conference users exist on the bridge for the call flow SPECTEL
 lngConfusersCount = ws.getConfusersCount("dnisId in (" + dnisIDs + ")");
 // XML that was sent to the server see here:
 // Sample_ManageConfuser1.getConfusersCount.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConfuser1.getConfusersCount.received.xml
 strInfo += "Number of SPECTEL conference users: " + lngConfusersCount.ToString()
 + ". \n\r";

 // Get conference users for the selected call flow
 confusers = ws.getConfusers(0, 0, "dnisId in (" + dnisIDs + ") and role = "
 + MODE_HOST.ToString(), "subscriberId asc");
 // XML that was sent to the server see here:
 // Sample_ManageConfuser1.getConfusers.sent.xml

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getDNISes.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getDNISes.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getConfusersCount.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getConfusersCount.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getConfusers.sent.xml

 Web Services API
 Programmer’s Guide
97

 // XML that was received from the server see here:
 // Sample_ManageConfuser1.getConfusers.received.xml
 /*
 List<Confuser> getConfusers(long offset,
 long limit,
 java.lang.String filter,
 java.lang.String order)
 throws ServerException,
 AccessDeniedException
 * This function returns the list of Confuser which match the given filter.
 * There are rare cases when this function needs to be called directly as
 * getSubscriber returns list of subordinate conference users.
 * Parameters:
 offset - zero based offset in recordset.
 limit - maximum number of objects to return.
 filter - The criteria to use to filter the rows. The criteria should be a
 simple sql conditional statement started with one or more Confuser
 field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example login='12' or login like'%2%' or subscriberId >= 15.
 Empty string or null means no filter.
 order - A string specifying Confuser field name and sort direction.
 For example "name" or "name desc".
 The default direction is asc and can be omitted.
 Empty string or null means no order.
 * Accepted fields:
 •subscriberId
 •confuserId
 •role
 •dnisId
 •accessCode
 •conferenceNumber
 * Returns:
 list of DNIS objects
 */
 if (confusers != null && confusers.Length > 0)
 {
 strInfo += "Number of SPECTEL conference users with host role: "
 + confusers.Length.ToString() + ". \n\r";
 strInfo += "subscr.\tconf #\taccess code \n\r";
 foreach (Confuser cu in confusers)
 {
 strInfo += cu.subscriberId.ToString() + "\t"
 + cu.conferenceInfo.conferenceNumber.ToString() + "\t"
 + cu.accessCode + "\n\r";
 }
 }
 else
 {
 strInfo += "No SPECTEL conference users with host role found. \n\r";
 }
 }
 }
 }
 // Sample of program output: Sample_ManageConfuser1.return.jpg
 // ** Number of SPECTEL conference users: 4.
 // ** Number of SPECTEL conference users with host role: 2.
 // ** subscr. conf # access code
 // ** 3 758288 961091
 // ** 4 214423 870888

 return strInfo;
 }
 catch (Exception ex)
 {
 mLastError = "Error in " + this.GetType().FullName +
 ".Sample_ManageConfuser1: " + ex.Message;
 return mLastError;
 }
}

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getConfusers.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.return.jpg

 Web Services API
 Programmer’s Guide
98

Conferences and Calls Management

Sample of Conferences Filtering, Changes Secure Mode, Dropping the
Conferences (Sample_ManageConference1)
/*
Sample of Conferences Filtering, Changes Secure Mode, Dropping the Conferences

Let’s review the following scenario:
• we need to count how many conferences are currently on the bridge;
• for the selected subscriber we need to drop all conferences if the participants count
 less than two;
• for unsecured conferences for the selected subscriber with two participants we need to
 make them secure.
*/
public String Sample_ManageConference1()
{
 // Declare variables
 long lngConferencesCount;
 Conference[] singleParticipantConferences;
 Conference[] twoParticipantsUnsecuredConferences;
 String filterSubscriber;
 String strStatus;

 try
 {
 mLastError = "";
 strStatus = "";

 // See screenshot of the conferences that were started on the bridge prior
 // to the program start: conferences_before.jpg

 // Count started conferences
 // We use empty filter parameter to output all conferences
 lngConferencesCount = ws.getConferencesCount("");
 // XML that was sent to the server see here:
 // Sample_ManageConference1.getConferencesCount.all_sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference1.getConferencesCount.all_received.xml
 strStatus += "Number of started conferences: " + lngConferencesCount.ToString()
 + ". \n\r";

 // Find all subscriber's conferences with the participants count less than two
 filterSubscriber = GetConferenceNumbersBySubscriberPIN("admin");
 // Click here to see GetConferenceNumbersBySubscriberPIN function implementation
 if (!String.IsNullOrEmpty(filterSubscriber))
 filterSubscriber = "conferenceNumber in (" + filterSubscriber + ") and ";
 singleParticipantConferences = ws.getConferences(0, 0,
 filterSubscriber + "participantCnt<2", "");
 // XML that was sent to the server see here:
 // Sample_ManageConference1.getConferences.single_sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference1.getConferences.single_received.xml
 /*
 List<Conference> getConferences(long offset,
 long limit,
 java.lang.String filter,
 java.lang.String order)
 throws ServerException,
 AccessDeniedException
 * This function returns list of Conferences which are registered for the subscriber
 * on which behalf this call is executed.
 * For administrator it returns list of all registered Conferences.
 * Parameters:
 offset - zero based offset in recordset.
 limit - maximum number of objects to return.

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference1/conferences_before.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferencesCount.all_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferencesCount.all_received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Common/GetConferenceNumbersBySubscriberPIN.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Common/GetConferenceNumbersBySubscriberPIN.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferences.single_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferences.single_received.xml

 Web Services API
 Programmer’s Guide
99

 filter - The criteria to use to filter the rows.
 The criteria should be a simple sql conditional statement started with one or
 more Conference field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example conferenceNumber='12' or conferenceNumber like'%2%' or duration >= 15.
 order - A string specifying Conference field name and sort direction.
 For example "conferenceNumber" or "created desc".
 The default direction is asc and can be omitted.
 Empty string or null means no order.
 * Accepted fields:
 •conferenceId
 •conferenceNumber
 •created ('yyyy.MM.dd/hh:mm' format)
 •duration
 •participantCnt
 •isSecured
 •muteMode
 * Empty string or null means no filter.
 * Returns:
 list of Conference objects
 */
 if (singleParticipantConferences != null && singleParticipantConferences.Length > 0)
 {
 foreach (Conference c in singleParticipantConferences)
 {
 ws.hangupConference(c.conferenceId);
 // XML that was sent to the server see here:
 // Sample_ManageConference1.hangupConference.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference1.hangupConference.received.xml
 }
 strStatus += "Number of dropped single participant conferences: "
 + singleParticipantConferences.Length.ToString() + ". \n\r";
 }
 else
 {
 strStatus += "No single participant conferences found. \n\r";
 }

 // Find subscriber's unsecured conferences with two participants
 twoParticipantsUnsecuredConferences = ws.getConferences(0, 0,
 filterSubscriber + "isSecured=0 and participantCnt=2", "");
 // XML that was sent to the server see here:
 // Sample_ManageConference1.getConferences.two_sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference1.getConferences.two_received.xml
 if (twoParticipantsUnsecuredConferences != null &&
 twoParticipantsUnsecuredConferences.Length > 0)
 {
 foreach (Conference c in twoParticipantsUnsecuredConferences)
 {
 ws.secureConference(c.conferenceId);
 // XML that was sent to the server see here:
 // Sample_ManageConference1.secureConference.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference1.secureConference.received.xml
 }
 strStatus += "Number of two participants conferences made secured: "
 + twoParticipantsUnsecuredConferences.Length.ToString() + ". \n\r";
 }
 else
 {
 strStatus += "No unsecured conferences with two participants found. \n\r";
 }

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.hangupConference.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.hangupConference.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferences.two_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferences.two_received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.secureConference.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.secureConference.received.xml

 Web Services API
 Programmer’s Guide
100

 // See screenshot of the conferences that were on the bridge after the program
 // is finished: conferences_after.jpg
 // In this case the program returns the following message:
 // Sample_ManageConference1.return.jpg
 // ** Number of started conferences: 2.
 // ** Number of dropped single participant conferences: 1.
 // ** Number of two participants conferences made secured: 1.

 return strStatus;
 }
 catch (Exception ex)
 {
 mLastError = "Error in " + this.GetType().FullName +
 ".Sample_ManageConference1: " + ex.Message;
 return mLastError;
 }
}

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference1/conferences_after.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.return.jpg

 Web Services API
 Programmer’s Guide
101

Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A
Sessions and Conference Recording (Sample_ManageConference2)
/*
Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A Sessions and
Conference Recording
Let’s review the following scenario:
• we need to place the specific conference (the conference with specific conference
 number) on hold;
• we need to wait 1 minute and take this conference off hold;
• after that we need to start conference recording and start Q&A session for this
 conference;
• we need to wait 1 minute, we assume that conference participants requested to ask
 questions during this minute;
• we need to let the first participant ask his question (i.e. un-mute him - engage his
 Q&A session);
• we need to wait 1 minute and then complete the first participant question, i.e.
 disengage his Q&A session;
• we need to stop Q&A session and stop conference recording for this conference.
*/
public void Sample_ManageConference2()
{
 // Declare constants
 const int QA_MODE_OPEN = 0; // Stop Q&A mode for the conference
 const int QA_MODE_CLOSED = 2; // Start Q&A mode for the conference
 const long CONFERENCE_NUMBER = 667788; // Default conference number for this sample
 // Declare variables
 Conference[] conferences;
 Session[] sessions;
 long conferenceId;
 long sessionId;

 try
 {
 mLastError = "";

 // See screenshot of the conferences that were started on the bridge prior
 // to the program start: conferences_before.jpg
 // See screenshot of the selected conference calls that were started on the bridge prior
 // to the program start: calls_before.jpg

 // Find the conference with the the conference number 667788
 conferences = ws.getConferences(0, 0, "conferenceNumber="
 + CONFERENCE_NUMBER.ToString(), "");
 // XML that was sent to the server see here:
 // Sample_ManageConference2.getConferences.conferenceNumber_sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference2.getConferences.conferenceNumber_received.xml

 if (conferences != null && conferences.Length > 0)
 {
 conferenceId = conferences[0].conferenceId;

 // Place the conference on hold
 ws.holdConference(conferenceId);
 // XML that was sent to the server see here:
 // Sample_ManageConference2.holdConference.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference2.holdConference.received.xml

 // Wait 1 minute (60,000 milliseconds)
 System.Threading.Thread.Sleep(60000);

 // The conference is on hold.
 // See screenshot of the conferences that were on the bridge at this
 // moment: conferences_pause1.jpg
 // See screenshot of the selected conference calls that were on the bridge at this
 // moment: calls_pause1.jpg

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/conferences_before.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_before.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.getConferences.conferenceNumber_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.getConferences.conferenceNumber_received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.holdConference.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.holdConference.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/conferences_pause1.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_pause1.jpg

 Web Services API
 Programmer’s Guide
102

 // Take the conference off hold
 ws.unHoldConference(conferenceId);
 // XML that was sent to the server see here:
 // Sample_ManageConference2.unHoldConference.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference2.unHoldConference.received.xml

 // Start the conference recording
 ws.startConferenceRecording(conferenceId);
 // XML that was sent to the server see here:
 // Sample_ManageConference2.startConferenceRecording.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference2.startConferenceRecording.received.xml

 // Start Q&A session for the conference
 //ws.muteConference(conferenceId, MUTE_MODE_QUESTION); // version 1.4
 ws.qaSetMode(conferenceId, QA_MODE_CLOSED); // version 2.x
 // XML that was sent to the server see here:
 // Sample_ManageConference2.qaSetMode.closed_sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference2.qaSetMode.closed_received.xml

 // Wait 1 minute (60,000 milliseconds)
 System.Threading.Thread.Sleep(60000);

 sessions = ws.getSessions(conferenceId, 0, 0, "role=2", "");
 // XML that was sent to the server see here:
 // Sample_ManageConference2.getSessions.conferenceId_sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference2.getSessions.conferenceId_received.xml

 if (sessions != null && sessions.Length > 0)
 {
 sessionId = sessions[0].sessionId;

 // Engage Q&A session for the first conference participant
 ws.qaEngage(sessionId);
 // XML that was sent to the server see here:
 // Sample_ManageConference2.qaEngage.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference2.qaEngage.received.xml
 }
 else
 {
 sessionId = 0;
 }

 // Wait 1 minute (60,000 milliseconds)
 System.Threading.Thread.Sleep(60000);

 // The conference recording is started, the Q&A session is started,
 // the first participant is asking a question.
 // See screenshot of the conferences that were on the bridge at this
 // moment: conferences_pause2.jpg
 // See screenshot of the selected conference calls that were on the bridge at this
 // moment: calls_pause2.jpg

 if (sessionId > 0)
 {
 // Disengage Q&A session for the first conference participant
 ws.qaDisengage(sessionId);
 // XML that was sent to the server see here:
 // Sample_ManageConference2.qaDisengage.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference2.qaDisengage.received.xml
 // See screenshot of the selected conference calls that were on the bridge at this
 // moment: calls_point3.jpg
 }

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.unHoldConference.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.unHoldConference.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.startConferenceRecording.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.startConferenceRecording.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaSetMode.closed_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaSetMode.closed_received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.getSessions.conferenceId_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.getSessions.conferenceId_received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaEngage.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaEngage.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/conferences_pause2.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_pause2.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaDisengage.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaDisengage.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_point3.jpg

 Web Services API
 Programmer’s Guide
103

 // Stop Q&A session for the conference
 //ws.muteConference(conferenceId, MUTE_MODE_OPEN); // version 1.4
 ws.qaSetMode(conferenceId, QA_MODE_OPEN); // version 2.x
 // XML that was sent to the server see here:
 // Sample_ManageConference2.qaSetMode.open_sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference2.qaSetMode.open_received.xml
 // See screenshot of the selected conference calls that were on the bridge at this
 // moment: calls_point4.jpg

 // Stop the conference recording
 ws.stopConferenceRecording(conferenceId);
 // XML that was sent to the server see here:
 // Sample_ManageConference2.stopConferenceRecording.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference2.stopConferenceRecording.received.xml
 }

 // See screenshot of the conferences that were on the bridge after
 // the program is finished: conferences_after.jpg
 // See screenshot of the selected conference calls that were on the bridge after
 // the program is finished: calls_after.jpg

 return;
 }
 catch (Exception ex)
 {
 mLastError = "Error in " + this.GetType().FullName +
 ".Sample_ManageConference2: " + ex.Message;
 }
}

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaSetMode.open_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaSetMode.open_received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_point4.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.stopConferenceRecording.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.stopConferenceRecording.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/conferences_after.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_after.jpg

 Web Services API
 Programmer’s Guide
104

Sample of Conference Polling Sessions (Sample_ManageConference3)
/*
Sample of Conference Polling Sessions
Let’s review the following scenario:
• we need to start the polling session for the specific conference (the conference
 with specific conference number) with available polling options 1, 2, 3;
• we need to wait 1 minute, we assume that conference participants will vote
 (select one of the available options) during this minute;
• we need to stop the polling session for this conference;
• after that we need to output polling results.
*/
public String Sample_ManageConference3()
{
 // Declare constants
 const long CONFERENCE_NUMBER = 651077; // Default conference number for this sample
 const String POLLING_OPTIONS = "123"; // Available polling options
 // Declare variables
 Conference[] conferences;
 PollingResult[] pollingResults;
 long conferenceId;
 String strStatus;

 try
 {
 mLastError = "";
 strStatus = "";

 conferences = ws.getConferences(0, 0, "conferenceNumber="
 + CONFERENCE_NUMBER.ToString(), "");
 // XML that was sent to the server see here:
 // Sample_ManageConference3.getConferences.conferenceNumber_sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference3.getConferences.conferenceNumber_received.xml
 if (conferences != null && conferences.Length > 0)
 {
 conferenceId = conferences[0].conferenceId;

 // Conference calls before the polling session has been started:
 // Sample_ManageConference3.conference_before.jpg
 ws.startPolling(conferenceId, POLLING_OPTIONS);
 // XML that was sent to the server see here:
 // Sample_ManageConference3.startPolling.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference3.startPolling.received.xml
 // Conference calls after the polling session has been started:
 // Sample_ManageConference3.conference_after.jpg

 // Wait 1 minute (60,000 milliseconds)
 System.Threading.Thread.Sleep(60000);

 ws.stopPolling(conferenceId);
 // XML that was sent to the server see here:
 // Sample_ManageConference3.stopPolling.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference3.stopPolling.received.xml

 pollingResults = ws.getPollingResults(conferenceId);
 // XML that was sent to the server see here:
 // Sample_ManageConference3.getPollingResults.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageConference3.getPollingResults.received.xml

 if (pollingResults != null && pollingResults.Length > 0)
 {
 strStatus += "Polling results for the conference " + CONFERENCE_NUMBER.ToString()
 + ". \n\r";

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.getConferences.conferenceNumber_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.getConferences.conferenceNumber_received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.conference_before.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.startPolling.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.startPolling.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.conference_after.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.stopPolling.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.stopPolling.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.getPollingResults.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.getPollingResults.received.xml

 Web Services API
 Programmer’s Guide
105

 foreach (PollingResult pr in pollingResults)
 {
 strStatus += pr.created.ToShortDateString() + " "
 + pr.created.ToShortTimeString() + "\n\r";
 foreach (anyType2anyTypeMapEntry s in pr.votes)
 {
 strStatus += "key: " + s.key + " / value: " + s.value + "\n\r";
 }
 }
 }
 else
 {
 strStatus += "No polling results for the conference. \n\r";
 }
 }
 else
 {
 strStatus += "The conference not found. \n\r";
 }

 // Sample of program output: Sample_ManageConference3.return.jpg
 // ** Polling results for the conference 651077.
 // ** 21.12.2009 14:18
 // ** key: 1 / value: 2
 // ** key: 2 / value: 0
 // ** key: 3 / value: 1
 // Polling charts: Sample_ManageConference3.conference_pollingCharts.jpg

 return strStatus;
 }
 catch (Exception ex)
 {
 mLastError = "Error in " + this.GetType().FullName +
 ".Sample_ManageConference3: " + ex.Message;
 return mLastError;
 }
}

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.return.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.conference_pollingCharts.jpg

 Web Services API
 Programmer’s Guide
106

Sample of Calls Filtering, Mute the Calls, Dropping the Calls
(Sample_ManageCall1)
/*
Sample of Calls Filtering, Mute the Calls, Dropping the Calls
Let’s review the following scenario:
• we need to count how many calls are currently on the bridge;
• for the selected subscriber we need to drop all participants calls if the call duration
 greater than 10 minutes;
• for remaining participants of the selected subscriber (with call duration less than 10
 minutes) we need to mute their calls.
*/
public String Sample_ManageCall1()
{
 // Declare variables
 long lngSessionsCount;
 long lngDroppedCount;
 long lngMutedCount;
 Session[] participantsSessions;
 String filterSubscriber;
 String strStatus;

 try
 {
 mLastError = "";
 strStatus = "";

 // See screenshot of the calls that were started on the bridge prior to the program
 // start: calls_before.jpg

 // Count started calls
 // We use negative conferenceId parameter and empty filter parameter to output all calls
 lngSessionsCount = ws.getSessionsCount(-1, "");
 // XML that was sent to the server see here:
 // Sample_ManageCall1.getSessionsCount.all_sent.xml
 // XML that was received from the server see here:
 // Sample_ManageCall1.getSessionsCount.all_received.xml
 strStatus += "Number of started calls: " + lngSessionsCount.ToString() + ". \n\r";

 // Find all subscriber's calls (sessions) where the role is participant
 filterSubscriber = GetConferenceNumbersBySubscriberPIN("admin");
 // Click here to see GetConferenceNumbersBySubscriberPIN function implementation
 if (!String.IsNullOrEmpty(filterSubscriber))
 filterSubscriber = "conferenceNumber in (" + filterSubscriber + ") and ";
 participantsSessions = ws.getSessions(-1, 0, 0, filterSubscriber + "role=2", "");
 // XML that was sent to the server see here:
 // Sample_ManageCall1.getSessions.participants_sent.xml
 // XML that was received from the server see here:
 // Sample_ManageCall1.getSessions.participants_received.xml
 /*
 List<Session> getSessions(long conferenceId,
 long offset,
 long limit,
 java.lang.String filter,
 java.lang.String order)
 throws ServerException,
 AccessDeniedException,
 ObjectNotFoundException
 * This function returns list of Sessions (calls) which match the filter provided.
 * There are two parameters offset and limit which help to implement paging on the web
 * application. If this function is called from non admin Subscribers it will returns
 * only Sessions visible for this account.
 * If call doesn't present an accesscode yet - it is visible only by admin
 * Parameters:
 conferenceId - Conference Indentifier.
 If parameter is less than zero Session objects for all Conference will be returned.
 offset - zero based offset in recordset.
 limit - maximum number of objects to return.

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall1/calls_before.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.getSessionsCount.all_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.getSessionsCount.all_received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Common/GetConferenceNumbersBySubscriberPIN.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Common/GetConferenceNumbersBySubscriberPIN.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.getSessions.participants_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.getSessions.participants_received.xml

 Web Services API
 Programmer’s Guide
107

 filter - The criteria to use to filter the rows. The criteria should be a simple sql
 conditional statement started with one or more Session field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example addressTo='12' or addressTo like'%2%' or duration >= 15.
 order - A string specifying Session field name and sort direction.
 For example "caller" or "caller desc".
 The default direction is asc and can be omitted.
 Empty string or null means no order.
 * Accepted fields:
 •sessionId
 •subscriberId
 •created ('yyyy.MM.dd/hh:mm' format)
 •joined ('yyyy.MM.dd/hh:mm' format) (works only when joined the conference)
 •duration
 •status
 •role (works only when joined the conference)
 •isMuted (works only when joined the conference) true/false values
 •addressTo
 •addressFrom
 •conferenceNumber (works only when joined the conference)
 •accessCode (works only when joined the conference)
 * Empty string or null means no filter.
 * Returns:
 list of Session objects
 */
 if (participantsSessions != null && participantsSessions.Length > 0)
 {
 lngDroppedCount = 0;
 lngMutedCount = 0;
 foreach (Session s in participantsSessions)
 {
 if (s.duration > 600) // 600 seconds = 10 minutes
 {
 ws.hangupSession(s.sessionId);
 // XML that was sent to the server see here:
 // Sample_ManageCall1.hangupSession.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageCall1.hangupSession.received.xml
 lngDroppedCount++;
 }
 else
 {
 ws.muteSession(s.sessionId);
 // XML that was sent to the server see here:
 // Sample_ManageCall1.muteSession.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageCall1.muteSession.received.xml
 lngMutedCount++;
 }
 }
 strStatus += "Number of participants' calls: "
 + participantsSessions.Length.ToString() + ". \n\r";
 strStatus += "Number of dropped participants' calls: " + lngDroppedCount.ToString()
 + ". \n\r";
 strStatus += "Number of muted participants' calls: " + lngMutedCount.ToString()
 + ". \n\r";
 }
 else
 {
 strStatus += "No participants' calls found. \n\r";
 }

 // See screenshot of the calls that were on the bridge after the program is finished:
 // calls_after.jpg
 // In this case the program returns the following message: Sample_ManageCall1.return.jpg
 // ** Number of started calls: 3.
 // ** Number of participants' calls: 2.
 // ** Number of dropped participants' calls: 1.
 // ** Number of muted participants' calls: 1.

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.hangupSession.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.hangupSession.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.muteSession.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.muteSession.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall1/calls_after.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.return.jpg

 Web Services API
 Programmer’s Guide
108

 return strStatus;
 }
 catch (Exception ex)
 {
 mLastError = "Error in " + this.GetType().FullName +
 ".Sample_ManageCall1: " + ex.Message;
 return mLastError;
 }
}

 Web Services API
 Programmer’s Guide
109

Sample of Setting Custom Name and Placing Calls on Hold
(Sample_ManageCall2)
/*
Sample of Setting Custom Name and Placing Calls on Hold
Let’s review the following scenario:
• for the conference with specific conference number we need to set custom name for the
 host “conference moderator”;
• for the same conference we need to place all listeners and participants on hold.
*/
public void Sample_ManageCall2()
{
 // Declare constants
 const int MODE_HOST = 1;
 const int MODE_PARTICIPANT = 2;
 const int MODE_LISTENER = 3;
 const long CONFERENCE_NUMBER = 667788; // Default conference number for testing
 // Declare variables
 Session[] conferenceSessions;

 try
 {
 mLastError = "";

 // See screenshot of the calls that were started on the bridge prior to
 // the program start: calls_before.jpg
 // See screenshot of the conference calls that were started on the bridge prior to
 // the program start: conference_before.jpg

 // Find all calls (sessions) for the conference number 667788
 conferenceSessions = ws.getSessions(-1, 0, 0, "conferenceNumber="
 + CONFERENCE_NUMBER.ToString(), "");
 // XML that was sent to the server see here:
 // Sample_ManageCall2.getSessions.conferenceNumber_sent.xml
 // XML that was received from the server see here:
 // Sample_ManageCall2.getSessions.conferenceNumber_received.xml

 if (conferenceSessions != null && conferenceSessions.Length > 0)
 {
 foreach (Session s in conferenceSessions)
 {
 if (s.role == MODE_HOST)
 {
 ws.setCustomName(s.sessionId, "conference moderator");
 // XML that was sent to the server see here:
 // Sample_ManageCall2.setCustomName.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageCall2.setCustomName.received.xml
 }
 else if (s.role == MODE_PARTICIPANT || s.role == MODE_LISTENER)
 {
 ws.holdSession(s.sessionId);
 // XML that was sent to the server see here:
 // Sample_ManageCall2.holdSession.sent.xml
 // XML that was received from the server see here:
 // Sample_ManageCall2.holdSession.received.xml
 }
 }
 }

 // See screenshot of the calls that were on the bridge after
 // the program is finished: calls_after.jpg
 // See screenshot of the conference calls that were on the bridge after
 // the program is finished: conference_after.jpg

 return;
 }

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall2/calls_before.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall2/conference_before.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.getSessions.conferenceNumber_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.getSessions.conferenceNumber_received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.setCustomName.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.setCustomName.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.holdSession.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.holdSession.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall2/calls_after.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_ManageCall2/conference_after.jpg

 Web Services API
 Programmer’s Guide
110

 catch (Exception ex)
 {
 mLastError = "Error in " + this.GetType().FullName +
 ".Sample_ManageCall2: " + ex.Message;
 }
}

 Web Services API
 Programmer’s Guide
111

CDRs Management

Sample of Getting Conferences Historical Information
(Sample_InfoConferenceDR1)
/*
Sample of Getting Conferences Historical Information

Let’s review the following scenario:
• we need to count how many conferences were on the bridge from the beginning of the
 month;
• for the selected subscriber we need to output his current month conferences information
 (conference number, conference ID, date and time when the conference occurred, duration,
 participants count, and info about recording URL if exists), ordered by conference
 number and conference date.
*/
public String Sample_InfoConferenceDR1()
{
 // Declare variables
 long lngConferencesCount;
 ConferenceDR[] conferenceDRs;
 DateTime startDate;
 String filter;
 String strInfo;

 try
 {
 mLastError = "";
 strInfo = "";

 // Count how many conferences were on the bridge from the beginning of the month
 startDate = new DateTime(DateTime.Now.Year, DateTime.Now.Month, 1);
 lngConferencesCount = ws.getConferenceDRsCount("created>='"
 + Utils.Date2Sql(startDate) + "'");
 // XML that was sent to the server see here:
 // Sample_InfoConferenceDR1.getConferenceDRsCount.all_sent.xml
 // XML that was received from the server see here:
 // Sample_InfoConferenceDR1.getConferenceDRsCount.all_received.xml
 strInfo += "Number of current month conferences: " + lngConferencesCount.ToString()
 + ". \n\r";

 // Find all current month conferences for the subscriber
 filter = GetConferenceNumbersBySubscriberPIN("admin");
 // Click here to see GetConferenceNumbersBySubscriberPIN function implementation
 if (String.IsNullOrEmpty(filter))
 filter = "created>='" + Utils.Date2Sql(startDate) + "'";
 else
 filter = "created>='" + Utils.Date2Sql(startDate) + "' and conferenceNumber in ("
 + filter + ")";
 conferenceDRs = ws.getConferenceDRs(0, 0, filter, "conferenceNumber, created");
 // XML that was sent to the server see here:
 // Sample_InfoConferenceDR1.getConferenceDRs.sent.xml
 // XML that was received from the server see here:
 // Sample_InfoConferenceDR1.getConferenceDRs.received.xml
 /*
 List<ConferenceDR> getConferenceDRs(long offset,
 long limit,
 java.lang.String filter,
 java.lang.String order)
 * This function returns list of ConferenceDRs which are registered for the subscriber.
 * For administrator it returns whole list of records.
 * Parameters:
 offset - zero based offset in recordset.
 limit - maximum number of objects to return.
 filter - The criteria to use to filter the rows.
 The criteria should be a simple sql conditional statement started
 with one or more ConferenceDR field names.
 Acceptable operators: <= , >= , != , = , < , > , like

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.getConferenceDRsCount.all_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.getConferenceDRsCount.all_received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Common/GetConferenceNumbersBySubscriberPIN.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Common/GetConferenceNumbersBySubscriberPIN.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.getConferenceDRs.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.getConferenceDRs.received.xml

 Web Services API
 Programmer’s Guide
112

 For example:
 conferenceId = 5424
 duration > 300 and duration < 400
 duration > 300 and conferenceNumber = 160
 participantCnt > 2 and participantCnt < 22
 created > '2008.08.07/00:00'
 Empty string or null means no filter.
 order - A string specifying ConferenceDR field name and sort direction.
 For example "conferenceNumber" or "created desc".
 The default direction is asc and can be omitted.
 Empty string or null means no order.
 * Accepted fields:
 •conferenceId
 •conferenceNumber
 •created ('yyyy.MM.dd/hh:mm' format)
 •duration
 •participantCnt
 * Returns:
 list (array) of ConferenceDR objects
 */
 if (conferenceDRs != null && conferenceDRs.Length > 0)
 {
 strInfo += "Number of current month conferences for the subscriber: "
 + conferenceDRs.Length.ToString() + ". \n\r";
 foreach (ConferenceDR cdr in conferenceDRs)
 {
 strInfo += cdr.conferenceNumber.ToString() + "\t"
 + cdr.conferenceId.ToString() + "\t"
 + cdr.created.ToShortDateString() + " " + cdr.created.ToShortTimeString() + "\t"
 + cdr.duration.ToString() + "\t"
 + cdr.participantCnt + "\t"
 + cdr.recordingUrl + "\n\r";
 }
 }
 else
 {
 strInfo += "No current month conferences for the subscriber found. \n\r";
 }

 // Sample of program output: Sample_InfoConferenceDR1.return.jpg
 // ** Number of current month conferences: 7.
 // ** Number of current month conferences for the subscriber: 6.
 // ** 651077 6 15/03/2010 5:01 568 3
 // ** 651077 7 15/03/2010 6:40 179 2
 // ** 667788 3 15/03/2010 12:50 33 1
 // ** 667788 4 15/03/2010 1:16 573 2
 // ** 667788 5 15/03/2010 1:27 11824 4 conferences/788/667788/record/5.wav
 // ** 667788 8 17/03/2010 12:32 1389 4

 return strInfo;
 }
 catch (Exception ex)
 {
 mLastError = "Error in " + this.GetType().FullName +
 ".Sample_InfoConferenceDR1: " + ex.Message;
 return mLastError;
 }
}

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm

 Web Services API
 Programmer’s Guide
113

Sample of the Shared Recording Generation (Sample_InfoConferenceDR2)
/*
Sample of the Shared Recording Generation
In the previous sample (Sample_InfoConferenceDR1) we get conferences with recording.
Let's review the following scenario:
• we need to generate recording URL link, that will allow user to download conference
 recording without authorization during the next hour (for the conference with recording
 referenced by the conferenceId, that was found in the previous sample);
• we need to output the ConferenceDR object information prior and after shared recording
 URL generation to see the differences in the object properties.
*/
public String Sample_InfoConferenceDR2(long conferenceId)
{
 // Declare constants
 const Boolean ALLOW_DOWNLOAD = true;
 // Declare variables
 ConferenceDR initialConferenceDR;
 ConferenceDR finalConferenceDR;
 DateTime expirePeriod;
 String strInfo;

 try
 {
 mLastError = "";
 strInfo = "";

 // Get initial the ConferenceDR object for the conference referenced by identifier
 initialConferenceDR = ws.getConferenceDR(conferenceId);
 // XML that was sent to the server see here:
 // Sample_InfoConferenceDR2.getConferenceDR.initial_sent.xml
 // XML that was received from the server see here:
 // Sample_InfoConferenceDR2.getConferenceDR.initial_received.xml

 if (initialConferenceDR != null)
 {
 // Calculate the period of time over which the shared link will be invalidated
 expirePeriod = DateTime.Now.AddHours(1);
 // Share the conference recording - generate URL to download
 ws.shareRecording(conferenceId, expirePeriod, ALLOW_DOWNLOAD);
 // XML that was sent to the server see here:
 // Sample_InfoConferenceDR2.shareRecording.sent.xml
 // XML that was received from the server see here:
 // Sample_InfoConferenceDR2.shareRecording.received.xml

 // Get final the ConferenceDR object for the conference referenced by identifier
 finalConferenceDR = ws.getConferenceDR(conferenceId);
 // XML that was sent to the server see here:
 // Sample_InfoConferenceDR2.getConferenceDR.final_sent.xml
 // XML that was received from the server see here:
 // Sample_InfoConferenceDR2.getConferenceDR.final_received.xml

 strInfo = "The conference " + conferenceId.ToString()
 + " recording can be download using URL: "
 + finalConferenceDR.sharedRecordingUrl + " till "
 + finalConferenceDR.expirePeriod.ToString() + ". \n\r";
 }
 else
 {
 strInfo = "The conference with ID " + conferenceId.ToString() + " not found. \n\r";
 }

 // Sample of program output: Sample_InfoConferenceDR2.return.jpg
 // ** The conference 39744 recording can be download using URL:
 // ** conferences/-17-65-6716-42-97111-52-112-17-65-6712627-17-65-67188316-17-65-67.wav
 // ** till 19/03/2010 13:24:37.

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.getConferenceDR.initial_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.getConferenceDR.initial_received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.shareRecording.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.shareRecording.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.getConferenceDR.final_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.getConferenceDR.final_received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.return.jpg

 Web Services API
 Programmer’s Guide
114

 return strInfo;
 }
 catch (Exception ex)
 {
 mLastError = "Error in " + this.GetType().FullName +
 ".Sample_InfoConferenceDR2: " + ex.Message;
 return mLastError;
 }
}

 Web Services API
 Programmer’s Guide
115

Sample of Getting Calls Historical Information (Sample_InfoSessionDR1)
/*
Sample of Getting Calls Historical Information
Let’s review the following scenario:
• we need to count how many calls were on the bridge from the beginning of the month for
 the specific conference number;
• for the specific conference number we need to output current month conference calls
 information (conference number, conference ID, date and time when the call occurred,
 duration, called number, calling number, custom name, disconnect reason);
• if number of calls to output greater than 5, we should implement paging and output 5
 calls on the page.
*/
public String Sample_InfoSessionDR1()
{
 // Declare constants
 const long PAGE_SIZE = 5; // Page size to display portion of the SessionDR objects
 const long CONFERENCE_NUMBER = 667788; // The conference number to filter the SessionDR objects
 // Declare variables
 long lngSessionsCount;
 SessionDR[] sessionDRs;
 DateTime startDate;
 String filter;
 String strInfo;

 try
 {
 mLastError = "";
 strInfo = "";

 // Generate filter that should be user to retrieve SessionDR objects
 startDate = new DateTime(DateTime.Now.Year, DateTime.Now.Month, 1);
 filter = "created>='" + Utils.Date2Sql(startDate) + "' and conferenceNumber="
 + CONFERENCE_NUMBER.ToString();

 // Count how many calls were on the bridge from the beginning of the month
 // for the specific conference number
 lngSessionsCount = ws.getSessionDRsCount(filter);
 // XML that was sent to the server see here:
 // Sample_InfoSessionDR1.getSessionDRsCount.sent.xml
 // XML that was received from the server see here:
 // Sample_InfoSessionDR1.getSessionDRsCount.received.xml
 strInfo += "Number of current month calls for the conference: "
 + lngSessionsCount.ToString() + ". \n\r";

 if (lngSessionsCount > 0)
 {
 for (long page = 0; page * PAGE_SIZE < lngSessionsCount; page++)
 {
 // Find all current month calls for the specific conference number
 sessionDRs = ws.getSessionDRs(page * PAGE_SIZE, PAGE_SIZE, filter, "");
 // This sample runs the loop three times and outputs three pages:
 // Page #1. XML that was sent to the server see here:
 // Sample_InfoSessionDR1.getSessionDRs.page1_sent.xml
 // Page #1. XML that was received from the server see here:
 // Sample_InfoSessionDR1.getSessionDRs.page1_received.xml
 // Page #2. XML that was sent to the server see here:
 // Sample_InfoSessionDR1.getSessionDRs.page2_sent.xml
 // Page #2. XML that was received from the server see here:
 // Sample_InfoSessionDR1.getSessionDRs.page2_received.xml
 // Page #3. XML that was sent to the server see here:
 // Sample_InfoSessionDR1.getSessionDRs.page3_sent.xml
 // Page #3. XML that was received from the server see here:
 // Sample_InfoSessionDR1.getSessionDRs.page3_received.xml

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRsCount.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRsCount.received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page1_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page1_received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page2_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page2_received.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page3_sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page3_received.xml

 Web Services API
 Programmer’s Guide
116

 /*
 List<SessionDR> getSessionDRs(long offset,
 long limit,
 java.lang.String filter,
 java.lang.String order)
 * This function returns list of SessionDRs allowed to view.
 * For administrator it returns whole list of records.
 * Parameters:
 offset - zero based offset in recordset.
 limit - maximum number of objects to return.
 filter - The criteria to use to filter the rows.
 The criteria should be a simple sql conditional statement started with one
 or more SessionDR field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example:
 conferenceId = 5424
 created > '2008.08.07/00:00'
 Empty string or null means no filter.
 order - A string specifying SessionDR field name and sort direction.
 For example "conferenceNumber" or "created desc".
 The default direction is asc and can be omitted.
 Empty string or null means no order.
 * Accepted fields:
 •conferenceId
 •conferenceNumber
 •created ('yyyy.MM.dd/hh:mm' format)
 •duration
 •role
 •joined
 •customName
 •caller
 •callee
 •addressFrom
 •addressTo
 •conferenceNumber
 •accessCode
 •disconnectReason
 * Returns:
 list (array) of SessionDR objects
 */
 if (sessionDRs != null && sessionDRs.Length > 0)
 {
 strInfo += "Page #" + (page + 1).ToString()
 + ". Calls (SessionDR objects) on the page: "
 + sessionDRs.Length.ToString() + ". \n\r";
 foreach (SessionDR sdr in sessionDRs)
 {
 strInfo += sdr.conferenceNumber.ToString() + "\t"
 + sdr.conferenceId.ToString() + "\t"
 + sdr.created.ToShortDateString() + " "
 + sdr.created.ToShortTimeString() + "\t"
 + sdr.duration.ToString() + "\t"
 + sdr.callee + "\t"
 + sdr.caller + "\t"
 + sdr.customName + "\t"
 + sdr.disconnectReason + "\n\r";
 }
 }
 }
 }
 else
 {
 strInfo += "No current month calls for the conference found. \n\r";
 }

 Web Services API
 Programmer’s Guide
117

 // Sample of program output: Sample_InfoSessionDR1.return.jpg
 // ** Number of current month calls for the conference: 11.
 // ** Page #1. Calls (SessionDR objects) on the page: 5.
 // ** 667788 3 15/03/2010 12:50 33 12 admin Normal
 // ** 667788 4 15/03/2010 1:25 28 12 admin 'Guest' MP is unavailable ...
 // ** 667788 4 15/03/2010 1:16 573 12 admin MP is unavailable ...
 // ** 667788 5 15/03/2010 1:33 244 REC_SERVER 12 Normal
 // ** 667788 5 15/03/2010 1:27 11824 12 admin Dropped by moderator
 // ** Page #2. Calls (SessionDR objects) on the page: 5.
 // ** 667788 5 15/03/2010 1:27 11810 12 unknown Dropped by moderator
 // ** 667788 5 15/03/2010 1:27 11797 12 admin Guest Dropped by moderator
 // ** 667788 8 17/03/2010 12:35 975 12 admin Guest Dropped by moderator
 // ** 667788 8 17/03/2010 12:32 1389 12 admin conference moderator Dropped...
 // ** 667788 8 17/03/2010 12:53 146 12 admin 'Guest' Dropped by moderator
 // ** Page #3. Calls (SessionDR objects) on the page: 1.
 // ** 667788 8 17/03/2010 12:42 783 12 unknown Dropped by moderator

 return strInfo;
 }
 catch (Exception ex)
 {
 mLastError = "Error in " + this.GetType().FullName +
 ".Sample_InfoSessionDR1: " + ex.Message;
 return mLastError;
 }
}

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm

 Web Services API
 Programmer’s Guide
118

Sample of Historical Calls Filtering (Sample_InfoSessionDR2)
/*
Sample of Historical Calls Filtering
Let’s review the following scenario:
• for the current month we need to output all calls that were connected to the
 conferences excluding service calls to the recording server initiated by bridge
 (for instance we should output calling number, called number, conference number,
 conference identifier, date/time when the call was started,
 and how long the call was connected to the conference).
*/
public String Sample_InfoSessionDR2()
{
 // Declare variables
 SessionDR[] sessionDRs;
 DateTime startDate;
 String filter;
 String strInfo;

 try
 {
 mLastError = "";
 strInfo = "";

 // Generate filter that should be user to retrieve SessionDR objects
 startDate = new DateTime(DateTime.Now.Year, DateTime.Now.Month, 1);
 filter = "created>='" + startDate.ToString("yyyy.MM.dd") + "/00:00'";
 filter += " and conferenceNumber!=0";
 filter += " and callee!='REC_SERVER'";

 // Get all calls based on the specified criteria
 sessionDRs = ws.getSessionDRs(0, 0, filter, "created");
 // XML that was sent to the server see here:
 // Sample_InfoSessionDR2.getSessionDRs.sent.xml
 // XML that was received from the server see here:
 // Sample_InfoSessionDR2.getSessionDRs.received.xml
 /*
 List<SessionDR> getSessionDRs(long offset,
 long limit,
 java.lang.String filter,
 java.lang.String order)
 * This function returns list of SessionDRs allowed to view.
 * For administrator it returns whole list of records.
 * Parameters:
 offset - zero based offset in recordset.
 limit - maximum number of objects to return.
 filter - The criteria to use to filter the rows.
 The criteria should be a simple sql conditional statement started with one or
 more SessionDR field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example:
 conferenceId = 5424
 created > '2008.08.07/00:00'
 Empty string or null means no filter.
 order - A string specifying SessionDR field name and sort direction.
 For example "conferenceNumber" or "created desc".
 The default direction is asc and can be omitted.
 Empty string or null means no order.
 * Accepted fields:
 •conferenceId
 •conferenceNumber
 •created ('yyyy.MM.dd/hh:mm' format)
 •duration
 •role
 •joined
 •customName
 •caller
 •callee

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.getSessionDRs.sent.xml
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.getSessionDRs.received.xml

 Web Services API
 Programmer’s Guide
119

 •addressFrom
 •addressTo
 •conferenceNumber
 •accessCode
 •disconnectReason
 * Returns:
 list (array) of SessionDR objects
 */
 if (sessionDRs != null && sessionDRs.Length > 0)
 {
 strInfo += "Number of current month calls that match to the specified criteria: ";
 strInfo += sessionDRs.Length.ToString() + ".\n\r";
 strInfo += "callee\tcaller\tconferenceNumber\tconferenceId\tcreated\tin conference\n\r";
 foreach (SessionDR sdr in sessionDRs)
 {
 strInfo += sdr.callee + "\t"
 + sdr.caller + "\t"
 + sdr.conferenceNumber.ToString() + "\t"
 + sdr.conferenceId.ToString() + "\t"
 + sdr.created.ToShortDateString() + " " + sdr.created.ToShortTimeString() + "\t"
 + (sdr.created.AddSeconds((Double) sdr.duration) –
 sdr.joined).TotalSeconds.ToString() + "\n\r";
 }
 }
 else
 {
 strInfo += "No current month calls that match to the specified criteria. \n\r";
 }

 // Sample of program output: Sample_InfoSessionDR2.return.jpg
 // ** Number of current month calls that match to the specified criteria: 18.
 // ** callee caller conferenceNumber conferenceId created in conference
 // ** 8665080012 Moderator-Console 758288 2 10/03/2010 7:08 267
 // ** 8665080012 admin 758288 2 10/03/2010 7:10 93
 // ** 8665080012 admin 758288 2 10/03/2010 7:12 28
 // ** 12 admin 667788 3 15/03/2010 12:50 31
 // ** ..

 return strInfo;
 }
 catch (Exception ex)
 {
 mLastError = "Error in " + this.GetType().FullName +
 ".Sample_InfoSessionDR2: " + ex.Message;
 return mLastError;
 }
}

http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.jpg
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/2_2/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm

 Web Services API
 Programmer’s Guide
120

Appendix B: Support Resources
If you have difficulty with this guide and any of the procedures listed herein, please contact
us using the following support resources.

Support Documentation
In addition to this Guide, you may obtain other WYDE Voice documentation from WYDE
Voice or from the WYDE Voice documentation Web site: http://docs.wydevoice.com/.

Web Support
Our support website is available 24 hours a day, 7 days a week, and 365 days a year at
http://www.wydevoice.com. You may download patches, support documentation and other
technical support information.

Telephone Support
For difficulties with any procedures described in this Guide, please contact us at 866-508-
9020 during our normal phone support hours of 7:00 am to 6:00 pm Pacific Standard Time
(PST). An engineer will respond to your inquiry within 24 hours.

Email Support
You may also email us your questions at support@wydevoice.com. We will respond to
your question within 24 hours.

http://docs.wydevoice.com/
http://www.wydevoice.com/
mailto:support@wydevoice.com

	Chapter 1: Introduction
	Assumed Skills
	Web Services
	Definitions

	 Chapter 2: Data Structures
	General Data Structure
	Data Classes (Entities)
	Subscriber
	Conference Account – Conference User (Confuser)
	Conference Info (ConfInfo)
	DNIS
	 DNIS Alias (DnisAlias)
	Call Flow (CallFlow)
	Attribute
	Conference
	Operator Status (OperatorStatus)
	ConferenceDR
	Polling Result (PollingResult)
	Operator’s Statistic (OperatorStatistic)
	Session
	SessionDR
	DTMF Event (DtmfEvent)
	Subscriber Conference (SubscriberConference)

	 Chapter 3: Samples of Functions
	WYDE Web Services Initialization
	Sample of WYDE Web Services Initialization

	Web Methods’ XML Requests and Responses
	Sample of XML for Function with Multiple Parameters Sent and List of Objects Received
	Sample of XML for Function with the Object Parameter Sent and the Object Received

	Subscribers Management
	Sample of Subscriber and his Conference Accounts Creation
	Sample of Subscribers Filtering, Modifications, Conference Accounts Modifications
	Sample of Subscribers Filtering and Deletion
	Sample of Getting Conference Users Information

	Conferences and Calls Management
	Sample of Conferences Filtering, Changes Secure Mode, Dropping the Conferences
	Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A Sessions and Conference Recording
	Sample of Conference Polling Sessions
	Sample of Calls Filtering, Mute the Calls, Dropping the Calls
	Sample of Setting Custom Name and Placing Calls on Hold

	CDRs Management
	Sample of Getting Conferences Historical Information
	Sample of the Shared Recording Generation
	Sample of Getting Calls Historical Information
	Sample of Historical Calls Filtering

	Active Speaker Notification
	Storage Library
	Conference Files Folder Structure and Showing Folder Content
	File upload
	Files management

	 Chapter 4: Function Reference
	Subscribers Management
	Subscribers’ Conference Users Management
	Conference Info Management
	Conferences and Calls Management
	Subscribers’ Conferences Management
	CDRs Management
	Call Flow and DNIS Management
	Backend and Frontend Services Management
	Exceptions
	Constants

	 Appendix A: Code Samples
	WYDE Web Services Initialization
	Sample of WYDE Web Services Initialization
	app.config

	 Web Methods’ XML Requests and Responses
	Sample of XML Request for Function with Multiple Parameters Sent
	Sample of XML Response for Function with List of Objects Received
	Sample of XML Request for Function with the Object Parameter Sent
	Sample of XML Response for Function with the Object Received

	 Subscribers Management
	Sample of Subscriber and his Conference Accounts Creation (Sample_ManageSubscriber1)
	Sample of Subscribers Filtering, Modifications, Conference Accounts Modifications (Sample_ManageSubscriber2)
	Sample of Subscribers Filtering and Deletion (Sample_ManageSubscriber3)
	Sample of Getting Conference Users Information (Sample_ManageConfuser1)

	 Conferences and Calls Management
	Sample of Conferences Filtering, Changes Secure Mode, Dropping the Conferences (Sample_ManageConference1)
	Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A Sessions and Conference Recording (Sample_ManageConference2)
	Sample of Conference Polling Sessions (Sample_ManageConference3)
	Sample of Calls Filtering, Mute the Calls, Dropping the Calls (Sample_ManageCall1)
	Sample of Setting Custom Name and Placing Calls on Hold (Sample_ManageCall2)

	 CDRs Management
	Sample of Getting Conferences Historical Information (Sample_InfoConferenceDR1)
	Sample of the Shared Recording Generation (Sample_InfoConferenceDR2)
	Sample of Getting Calls Historical Information (Sample_InfoSessionDR1)
	Sample of Historical Calls Filtering (Sample_InfoSessionDR2)

	 Appendix B: Support Resources
	Support Documentation
	Web Support
	Telephone Support
	Email Support

