

Web Service API –
Programmer’s Guide

(version 1.4.31)

 Web Services API
 Programmer’s Guide
2

Disclaimer
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN
THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL
ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL
RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE
ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET
THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY
THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR WIDE VOICE REPRESENTATIVE
FOR A COPY.

IN NO EVENT SHALL WIDE VOICE OR ITS SUPPLIERS BE LIABLE FOR ANY
INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES,
INCLUDING, WITHOUT LIMITATION LOST PROFITS OR LOSS OR DAMAGE TO
DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN
IF WIDE OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Copyright
Except where expressly stated otherwise, the Product is protected by copyright and other
laws respecting proprietary rights. Unauthorized reproduction, transfer, and or use can be a
criminal, as well as civil, offense under the applicable law.

Wide Voice and the Wide Voice logo are registered trademarks of Wide Voice LLC in the
United States of America and other jurisdictions. Unless otherwise provided in this
Documentation, marks identified with “R” / ®, “TM” / ™ and “SM” are registered marks;
trademarks are the property of their respective owners.

For the most current versions of documentation, go to the Wide support Web site:
http://www.wydevoice.com/support

December 15, 2009

http://www.wydevoice.com/

 Web Services API
 Programmer’s Guide
3

Symbols and Notations in this Manual

The following notations and symbols can be found in this manual.

Denotes any item that requires special attention or care. Damage to the
equipment or the operator may result from failure to take note of the noted
instructions

Figure Denotes any illustration

Table Denotes any table

Text Denotes any text output

Button Denotes any button caption

 Web Services API
 Programmer’s Guide
4

Table of Contents
Symbols and Notations in this Manual... 3
Table of Contents ... 4

Tables List .. 6
Figures List ... 7

Chapter 1: Introduction... 8
Assumed Skills ... 8
Web Services .. 9
Definitions .. 9

Chapter 2: Data Structures.. 13
General Data Structure ... 13
Data Classes (Entities).. 15

Subscriber ... 15
Conference Account – Conference User .. 15
Conference Info .. 16
DNIS... 16
Call Flow .. 17
Attribute.. 17
Conference.. 18
ConferenceDR .. 18
Session.. 19
SessionDR .. 19

Chapter 3: Samples of Functions.. 21
Wyde Web Services Initialization .. 21

Sample of Wyde Web Services Initialization... 21
Subscribers Management.. 21

Sample of Subscriber and his Conference Accounts Creation..................................... 21
Sample of Subscribers Filtering, Modifications, Conference Accounts Modifications21
Sample of Subscribers Filtering and Deletion.. 22
Sample of Getting Conference Users Information ... 22

Conferences and Calls Management .. 22
Sample of Conferences Filtering, Changes Secure Mode, Dropping the Conferences 22
Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A
Sessions and Conference Recording .. 23
Sample of Calls Filtering, Mute the Calls, Dropping the Calls.................................... 23
Sample of Setting Custom Name and Placing Calls on Hold 23

CDRs Management .. 24
Sample of Getting Conferences Historical Information... 24
Sample of the Shared Recording Generation ... 24
Sample of Getting Calls Historical Information... 24

Chapter 4: Function Reference... 26
Subscribers Management.. 26

Subscribers’ Conference Users Management... 28
Conferences and Calls Management .. 30
CDRs Management .. 39

 Web Services API
 Programmer’s Guide
5

Call Flow, DNIS, and Conference Info Management .. 43
Backend and Frontend Services Management.. 48
Exceptions .. 50
Constants .. 50

Appendix A: Support Resources .. 52
Support Documentation.. 52
Web Support ... 52
Telephone Support.. 52
Email Support ... 52

 Web Services API
 Programmer’s Guide
6

Tables List
Table 1: Properties of Subscriber ... 15
Table 2: Properties of Confuser.. 16
Table 3: Properties of ConfInfo.. 16
Table 4: Properties of DNIS ... 16
Table 5: Properties of CallFlow ... 17
Table 6: Properties of Attribute .. 17
Table 7: Properties of Conference .. 18
Table 8: Properties of ConferenceDR .. 19
Table 9: Properties of Session .. 19
Table 10: Properties of SessionDR... 20

 Web Services API
 Programmer’s Guide
7

Figures List
Figure 1: The Web Services Architecture .. 9
Figure 2: The UML Class Diagram.. 14

 Web Services API
 Programmer’s Guide
8

Chapter 1: Introduction
Wyde VM 1000 and VM 3000 conferencing bridges provide different API that allow
manage conferences and calls, configure subscribers and their conference account, maintain
DNIS and call flow management. The basic APIs are
x web services API,
x RT (real time) interface,
x different adapters, for instance

o billing adapter that allow writing calls and conferences information to an
external database,

o authentication adapter that allow user authentication based on external
database), etc.

This document is programmer’s guide for the web services API only. Other APIs are being
described in the separate documentation.

Please note that if call flow is setup to use external authentication server (like RADIUS)
user management API should not be used.

Wyde web services API is designed to query and manage calls and conferences happening
on the bridge, manage subscribers and their conference accounts. Through the API you also
can manage users and access code used for local authentication. API helps to get
information not only in real time mode, but also happened in the past.

The URL for the Wyde web services is http://<Wyde bridge domain>/dnca/jAdmin?wsdl.
In some languages to point to Wyde web services you may need to use URL without
“?wsdl” suffix: http://<Wyde bridge domain>/dnca/jAdmin. Here <Wyde bridge domain>
is either the registered domain name or IP address that gives the destination location for the
Wyde web services URL. For instance the possible Wyde web services URLs could be
http://dnca0.freeconferencecall.com/dnca/jAdmin?wsdl or
http://38.101.116.27/dnca/jAdmin?wsdl.

This Web Service Interfaces – Programmer’s Guide is based on Wyde web
services API version 1.4.31. If you use another version of API the same
functions may be different and you may need other version of the guide.

Assumed Skills
This programmer’s guide assumes you have a working knowledge of the following
technologies and skills:
x PC usage
x System administration
x Programming basics (in some kind of programming languages)
x Understanding of object-oriented classes structure, UML basics

http://dnca0.freeconferencecall.com/dnca/jAdmin?wsdl
http://38.101.116.27/dnca/jAdmin?wsdl

 Web Services API
 Programmer’s Guide
9

x VOIP basics
x TCP/IP networking
x Web Administration Interface – User Guide

Web Services
Formal Web Service definition is given by World Wide Web Consortium (W3C) – the
main international standards organization for the World Wide Web. According to W3C, a
web service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.

Web services architecture is shown on Figure 1.

Figure 1: The Web Services Architecture

Web services are platform independent. Web services are based on open standards and
protocols. Web services are supported by most major software vendors and industry
analysts. You can access Wyde web services from different platforms and from different
programming languages.

The detail information about web services can be read in the following articles:
x Web Services Architecture – http://www.w3.org/TR/ws-arch/
x Web Services Activity – http://www.w3.org/2002/ws/
x Web Services Glossary – http://www.w3.org/TR/ws-gloss/

Definitions
In order to discuss the Wyde web services API effectively, we need to have a common set
of terminology. For this purpose, we should definite the dictionary for the terms you will
see throughout this programmer’s guide:
x Class – A programming language construct that is used as a template to create objects

of that class. This template describes the state and behavior that the objects of the class
all share. An object of a given class is called an instance of the class. The class that

http://www.w3.org/TR/ws-arch/
http://www.w3.org/2002/ws/
http://www.w3.org/TR/ws-gloss/

 Web Services API
 Programmer’s Guide
10

contains that instance can be considered as the type of that object. The classes that are
designed in the web services API are Subscriber, Call Flow (CallFlow), DNIS,
Conference Account/User (Confuser), Attribute, Conference Info (ConfInfo), Session,
SessionDR, Conference, ConferenceDR.

x Identifier – A unique key to uniquely identify each instance of the class. In Wyde web
services API data structure, the identifier is the single property value, usually it is
numeric (long) identifier (ID). Identifier can be used to retrieve information about the
single instance of the class; the Wyde web services API contains methods get<Class>
(for instance getSubscriber, getDNIS, etc.) that are used to get single instance of the
class using the transferred parameter – the identifier of the object instance.

x Reference Identifier – A referential constraint between two classes that is used to join
the classes. The reference identifier identifies a column or a set of columns in one
(referencing) class that refers to a column or set of columns in another (referenced)
class. The columns in the referencing class must be the identifier. The values in the
referencing columns of one class instance must occur in a single instance in the
referenced class; an instance in the referencing class cannot contain values that don't
exist in the referenced class. In other words these constructs are being used to join the
classes and the instances of these classes. For instance Confuser class has reference
identifier subscriberId; the values of this attribute allow join different Conference User
objects with Subscribers, who own these Conference Users.

x Subscriber – A real person, he has a name, phone number, e-mail address, etc. The
subscriber can have conference accounts, he does not have access codes, but access
codes are properties of conference accounts that have subscribers. Note that non-admin
(non-operator) subscribers can see only “own” information, i.e. his information and
information that belongs to subscribers created by him, he can see only their calls,
conferences, the reports will show only their data, etc.
To describe subscribers web services API has the class Subscriber; the identifier of this
class is subscriberId; the following classes have reference identifiers to the Subscriber
class: Confuser, Session, SessionDR, i.e. they are joined with Subscribers; Subscribers
can own conference accounts (conference users) information.

x PIN – The login ID for the subscriber (must be unique). It can be used either as login in
Web Administration Interface (in this case it can be either number or alpha-numeric) or
as login for some call flows (in this case must be numeric) for participants
authorization.

x Conference Account – The element of subscriber conferences configuration.
Conference accounts always belong to subscriber. It is being used to define a person in
a conference with a particular role (e.g. host, participant, listener, etc.), the DNIS
number that should be used to call to the conference, and the access code that should be
entered by the user that called to the conference DNIS to determine his role. A
subscriber could be a host user in one conference and a listener in another. Conference
accounts with the same conference number represent single conference setup.
To describe conference accounts web services API has the class Confuser (Conference
User); the identifier of this class is confuserId; this class has reference identifier to the
following classes: Subscriber, DNIS, ConfInfo, and set of Attributes.

x DNIS – A unique set of numbers that is outpulsed by a phone carrier that indicates the
intended destination for a particular call. It can be any length digits (although usually 10

 Web Services API
 Programmer’s Guide
11

digits). DNIS is the property of the conference account, but different DNIS numbers
can be used to connect to the same conference.
To describe DNIS web services API has the class DNIS; the identifier of this class is
dnisId; this class has reference identifier to the CallFlow classes and set of Attributes;
the Confuser class has reference identifier to the DNIS class.

x Access Code – A numeric code unique for DNIS that allows a host or participant or
listener access to a conference call. When users call to DNIS number they being asked
to enter their access code. The access code determines the conference and the user role
in the conference. Different access codes can determine the same conference, for
instance one access code can determine the connected user has host role, another access
code can determine that connected user has participant role, and another access code
can determine that connected user has listener role.

x Host – A user in the conference call that can make changes to the system while the
conference call is in progress. Like change the security setting, change who can talk or
answer, etc. Sometimes the host user is called moderator. This user role is defined in
conference account.

x Participant – A person in the conference who can actively participate in a call by both
talking and listening. This user role is defined in conference account.

x Listener – A person in the conference who can hear the conference call, but cannot
speak. Their audio path is one way only (receive). This user role is defined in
conference account.

x Conference Number – A unique external conference number. Conference number is
the property of conference account. If the conference accounts have the same
conference number all these accounts determine one single conference. For instance the
user can create one conference account record that determine host role, another
conference account record that determine participant role, and another conference
account record that determine listener role – all these records should have the same
conference number to determine one unique conference.
To represent unique conference (conference number) web services API has the class
ConfInfo (Conference Info); the identifier of this class is conferenceNumber; the
following classes have reference identifiers to the ConfInfo class: Confuser, Session,
SessionDR, Conference, ConferenceDR, i.e. they are joined with specific conference
information.

x Conference ID – A unique conference ID that represents the instance of a conference.
When any conference is being started it receives unique conference ID, and all calls to
this conference have the same conference ID; if this conference has been completed and
another conference is being started that conference will receive another conference ID.
Conference ID is normally not exposed to users, unless on the reports.

x Call Flow – A unique conference service setup, the logic that is used to process the
conference calls. This is the process a call goes through from call setup to, to
processing, to call tear down. It includes the logic, DTMF key-presses used, functions,
and the recorded prompts. There are two basic call flow categories: call flows without
authentication and call flows with authentication.
To describe call flows web services API has the class CallFlow; the identifier of this
class is callflowId; this class has a set of Attributes; the DNIS class has reference
identifier to the CallFlow class.

 Web Services API
 Programmer’s Guide
12

x Attribute – In terms of Wyde web services API, a data structure is used to carry
attributes for call flow (CallFlow), DNIS and conference user (Confuser). The attributes
skeleton is defined by call flow; other attributes can only override some of them, so for
instance when a user called in to the conference DNIS it gets attributes exposed by the
call flow, but some of these attributes can be already altered by the DNIS. Each
attribute has name, type, value, and role. The names of the attributes are unique;
CallFlow, DNIS, and Confuser classes have a set of Attribute objects associated with
them.

x Conference – A data structure is used to describe ongoing conference on the bridge.
Objects of this type are only created by server. User may fetch these objects by calling
appropriate function. When conference is over the conference object is deleted by the
server.
The conference object is identified by the conferneceId property value, this is a globally
unique identifier that represents the instance of a conference; this class has reference
identifier to a ConfInfo class (conference number); SessionDR class has reference
identifier to the Conference class.

x ConferenceDR – A data structure is used to describe conference which is already
terminated on the on the bridge. User can not directly create this object.
The conferenceDR object is identified by the conferneceId property value; this class has
reference identifier to a ConfInfo class (conference number).

x Session – A data structure represents a single ongoing call on the server. User can not
directly create this object. When the call is over server automatically deletes this object.
Normally this data structure is used to get information about call attributes like
calling/called number etc., or do something with the call, for instance mute, hang, hold
etc.
The identifier of the Session class is sessionId; this class has reference identifiers to
Subscriber and ConfInfo classes.

x SessionDR – A data structure represents a single call on the server which is already
terminated on the on the bridge. User can not directly create this object.
The identifier of the SessionDR class is sessionId; this class has reference identifiers to
Subscriber, ConfInfo, and Conference classes.

 Web Services API
 Programmer’s Guide
13

Chapter 2: Data Structures

General Data Structure
The class diagram, data classes (entities) and relations between them are shown on Figure
2. Boxes on this figure are representing data classes (entities), these classes will be
described in the next section of this guide; names of the classes are shown in bold,
identifiers are shown in blue color, reference identifiers are shown in green color,
encapsulated properties are shown in brown color, references (relations) between
classes are shown with black solid arrows, encapsulations (aggregations) between classes
are shown with brown dash lines ended with diamonds.

 Web Services API
 Programmer’s Guide
14

Figure 2: The UML Class Diagram

 Web Services API
 Programmer’s Guide
15

Data Classes (Entities)

Subscriber
This data structure holds information about subscribers. Subscriber is a real person; he has
a name, phone number, e-mail address, etc. The subscriber can have conference accounts,
he does not have access codes, but access codes are properties of conference accounts that
have subscribers. Subscribers should make a hierarchy – that is why each subscriber has
reference to another subscriber who created it. Subscriber which doesn’t have a parent -
called Administrator. Note that non-admin (non-operator) subscribers can see only “own”
information, i.e. his information and information that belongs to subscribers created by
him, he can see only their calls, conferences, the reports will show only their data, etc.

Table 1: Properties of Subscriber
String address1 Subscriber’s address
String address2
String city Subscriber’s city
Confuser[] confusers List of confusers this subscriber associated with. It can be

populated by user during subscriber
String country
Date created Date when record is created; assigned by the server
String details Any additional details
String email Subscriber’s e-mail
String firstName Subscriber real first name (*)

Subscriber real last name (*) String lastName
long parentId ID of parent subscriber (*)
String password password for the logging in to the web interface (*)
String phoneNumber Subscriber’s phonenumber used if server needs to dialout to this

subscriber
String pin pin for the logging in to the web interface (*)

pin should be unique among all subscribers on the server
if pin is used to identify subscriber in a callflow it should
consist only digits
Subscriber’s role (i.e. admin, operator, user, etc.) int role

long subscriberId Unique ID assigned by the server
String zip Subscriber’s zip code
* – for this and all subsequent classes designates mandatory fields during object creation or
modification

Click here to see subscriber XML and class definition.

Conference Account – Conference User
Conference user (Confuser) class represents conference account, described in web
administration interface guide.

Conference account is the element of subscriber conferences configuration. Conference
accounts always belong to subscriber. It is being used to define a person in a conference
with a particular role (e.g. host, participant, listener, etc.), the DNIS number that should be
used to call to the conference, and the access code that should be entered by the user that
called to the conference DNIS to determine his role. A subscriber could be a host user in
one conference and a listener in another. Conference accounts with the same conference
number represent single conference setup.

http://ftp.wydevoice.com:8021/Classes/Class_Subscriber.htm

 Web Services API
 Programmer’s Guide
16

Additionally, it is possible to override some attributes exposed by default callflow so this
Conference user has a customized behavior (For example this user can disable entry tones
just for him while all other users on this number still have them on).

Table 2: Properties of Confuser
String accessCode Access code for this user. It is used for authentication in a

conference. Access code should be unique across other
accessCodes (*)

Attribute[] attributes List of attributes and their values imposed by the calllflow
this user is assigned to. These attributes may be overwritten
for this particular user or taken from parent or defaults

ConfInfo conferenceInfo Holds information about the conference this confuser
participates in

long confuserId Unique ID assigned by the server
Date created Date when record is created; assigned by the server
long dnisId ID of DNIS object this user is associated with (*)
long role Role of this confuser Moderator/Host (1L), Participant (2L),

Listener (3L) (*)
long subscriberId ID of subscriber this confuser belongs to

Click here to see conference user XML and class definition.

Conference Info
This data structure is designed to uniquely identify conference. It is a part of "Conference
User” definition and consists of the fields described in Table 3.

All Conference Users with any access codes and the same conferenceNumber will be
assigned to the same conference. Please note that Conference Users are not obliged to dial
the same DNIS to get to the same conference. To create a new conference you need to pass
0 as a conferneceNumber and provide meaningful description of this conference. In this
case server automatically assigns a new unique conferenceNumber.

Table 3: Properties of ConfInfo
long conferenceNumber Identifier of the conference where this user will be assigned

after successful authentication. It should be unique across
other confNumbers; 0 means create a new one

String
confenreceDescription

Description of the conference; if conferenceNumber=0 holds new
conference description

Click here to see conference info XML and class definition.

DNIS
DNIS is a unique set of numbers that is outpulsed by a phone carrier that indicates the
intended destination for a particular call. This data structure holds information about
registered DNIS (called phone numbers) on the bridge. Besides the phone number (usually
10 digits length) each DNIS has a reference to a callflow.

Conference accounts have DNIS (dnisId) as its property, but different DNIS numbers can
be used to connect to the same conference. In addition different DNISes can be based on
the same callflows but just have different attributes (like a welcome prompt for example).

Table 4: Properties of DNIS

http://ftp.wydevoice.com:8021/Classes/Class_Confuser.htm
http://ftp.wydevoice.com:8021/Classes/Class_ConfInfo.htm

 Web Services API
 Programmer’s Guide
17

Attribute[] attributes DNIS attributes inherited and may be overwritten from callflow
long callflowId ID of callflow this DNIS belongs to
String description Description
String did Telephone number, or name if connected to VOIP switch (*)
long dnisId Unique ID assigned by the server

Click here to see DNIS XML and class definition.

Call Flow
Call flow is a unique conference service setup, the logic that is used to process the
conference calls. This is the process a call goes through from call setup to, to processing, to
call tear down. It includes the logic, DTMF key-presses used, functions, and the recorded
prompts. Each script takes several parameters (like welcome prompt).

Call flows cannot be dynamically created by user as they need to be put into the proper
place on the file system and need to be configured by administrator. However end-user
should be able to change attributes of already registered call flows in order to customize
their behavior.

Table 5: Properties of CallFlow
long callflowId Unique ID assigned by the server
Attribute[] confuserAttributes Template of attributes for DNIS and confusers
String name Callflow name (description) (*)
String path Directory where callflow resides on the server (*)

Click here to see call flow XML and class definition.

Attribute
This data structure is used to carry attributes for call flow (CallFlow), DNIS and conference
user (Confuser). The attributes skeleton is defined by call flow. Other entities can only
override some of them. So when a user called in to the conference DNIS it gets attributes
exposed by the call flow. Some of these attributes can be already altered by the DNIS. After
user provided his access code and authentication was successful some attributes can be
overwritten again by the conference user (Confuser).

It is important to remember that list of attributes is always defined by call flow. Values of
some attributes may be overwritten by DNIS and Confuser. Each attribute can be allowed
or disallowed for modification by the administrator. The call flow offers default values for
each attribute.

Each attribute has name, type and value. Depending of the type web application should
apply one or another validation rule. Also attribute has a “role” so confuesrs can only see
those attributes which role matches their own role.

Table 6: Properties of Attribute
String enumValues if type is eEnum this variable holds possible choices like

choice1;choice2;choice3 – this is readonly field populated by server
bool isOverridable whether or not user can attempt to override this value
String name attribute name like “ALLOW_CONTINUE” (*)
long role confuser Role this attribute belongs to (*)
long type attribute type like TYPE_STRING (0L), TYPE_INT (2L), TYPE_DTMF (3L)

(*)

http://ftp.wydevoice.com:8021/Classes/Class_DNIS.htm
http://ftp.wydevoice.com:8021/Classes/Class_CallFlow.htm

 Web Services API
 Programmer’s Guide
18

String value attribute value like TRUE (*)

Click here to see attribute XML and class definition.

Conference
This data structure is used to describe ongoing conference on the bridge. Objects of this
type are only created by server. User may fetch these objects by calling appropriate
function. When conference is over object is deleted by the server.

The conference object is identified by conferneceId, this is a globally unique identifier that
represents the instance of a conference. So if user has two conferences with the same access
code or conference number – these conferences will have different conferneceId. It is
important to not mix it up with Conference Number. In the previous example these two
conferences will have the same Conference Number; the conference number is the property
of conference account; if the conference accounts have the same conference number all
these accounts determine one single conference.

Table 7: Properties of Conference
long conferneceId Unique ID assigned by the server
Date created Time when this conference was created - first caller

arrived
long duration Number of seconds which have elapsed since the

conference was created
long injectionNumber For the operator conference this field determines to

which conference number the operator conference is
connected at the moment

boolean isOnHold This field determines whether the conference is on hold
boolean isRecording This field determines whether the conference is recorded
boolean isScanning For the operator conference this field determines

whether the operator conference is in scanning mode
(i.e. surveillance call, usually started when the
operator presses *1 on his phone keypad)

boolean isSecured This field determines whether the conference is secured,
i.e. new calls allowed to join to the conference or not

long muteMode This field determines mute mode
MUTE_MODE_OPEN (0L), MUTE_MODE_QUESTION (1L),
MUTE_MODE_CLOSED (2L)
When MUTE_MODE_OPEN mode is enabled any conference
participant can talk and mute/unmute himself. When
MUTE_MODE_QUESTION mode is enabled all conference
participants are muted however any of them can unmute
himself to ask a question. When MUTE_MODE_CLOSED mode is
enabled all conference participants are muted and can
not

long number This is a conference number
long operatorMode This field determines operators conference mode

CONFERENCE_REGULAR (0L), CONFERENCE_OPERATOR (1L),
CONFERENCE_OPERATOR_LISTEN (2L),
CONFERENCE_OPERATOR_AUTOLISTEN (3L),
CONFERENCE_AUTOLISTEN_SLEEP (4L)

long participantCnt Number of participants in the conference

Click here to see conference XML and class definition.

ConferenceDR
This data structure is used to describe conference which is already terminated on the on the
bridge. User can not directly create this object.

http://ftp.wydevoice.com:8021/Classes/Class_Attribute.htm
http://ftp.wydevoice.com:8021/Classes/Class_Conference.htm

 Web Services API
 Programmer’s Guide
19

Table 8: Properties of ConferenceDR
long conferneceId Unique ID assigned by the server
Date created Time when this conference was created -first caller arrived
long duration Number of seconds which have elapsed since the conference was

created till the time when it was terminated
Date expirePeriod Expiration period for shared recording URL
bool hasRecording Whether or not conference was recorded
long number This is a conference number
long participantCnt Number of participants in the conference
String recordingUrl URL for the recording
String sharedRecordingUrl URL for shared recording
long ulawDuration Recording duration in seconds

Click here to see conferenceDR XML and class definition.

Session
This data structure represents a single ongoing call on the server. User can not directly
create this object. When the call is over server automatically deletes this object.

Normally this data structure is used to get information about call attributes like
calling/called number etc. If something needs to be done with the call (mute/hang/hold) the
call should be referenced by sessionId.

Table 9: Properties of Session
String accessCode access code entered by caller
String addressFrom Full address FROM
String addressTo Full address TO

Information about callee as it is provided in TO fieldString callee
Information about caller as it is provided in FROM field String caller
(normally the phone number)

long conferenceNumber ConferneceNumber this session belongs to
Date created Time when this session was created
String customName custom user name either set from the web or IVR (PIN)
long duration Number of seconds which have elapsed since the session started
boolean isMuted whether this session is muted or not
boolean isOnHold whether this session is put on hold by administrator
boolean isOnHoldSelf whether this session is put on hold by the client
Date joined Time when this session joined to the conference
long operatorStatus OPERATOR_STATUS_IDLE (0L), OPERATOR_STATUS_WAIT (1L),

OPERATOR_STATUS_TALK (2L)
long qaStatus QA_STATUS_IDLE (0L), QA_STATUS_RAISEDHAND (1L), QA_STAUS_ACTIVE

(2L)
long role This field determines what role this session has. The roles

should be the same as in Confusers. Role helps to verify whether
this session is allowed to do recording – MODE_UNDEFINED (0L)
MODE_HOST (1L), MODE_PARTICIPANT (2L), MODE_LISTENER (3L)

long sessionId Unique ID assigned by the session
long status This field determines whether the current session status:

STATUS_IVR (1L) - session is owned by frontend;
STATUS_CONFERENCE (2L) - session is owned by backend;
STATUS_CLOSED (3L) - session is closed; STATUS_DIALING (4L) -
session is dealing

long subscriberId ID of subscriber assigned by the session

Click here to see session XML and class definition.

SessionDR
This data structure represents a single call on the server which is already terminated on the
on the bridge. User can not directly create this object.

http://ftp.wydevoice.com:8021/Classes/Class_ConferenceDR.htm
http://ftp.wydevoice.com:8021/Classes/Class_Session.htm

 Web Services API
 Programmer’s Guide
20

Table 10: Properties of SessionDR
String accessCode access code entered by caller
String addressFrom Full address FROM
String addressTo Full address TO
String callee Information about callee as it is provided in TO field
String caller Information about caller as it is provided in FROM field

(normally the phone number)
Conference number this session belongs to long conferenceId

long conferenceNumber Conference ID this session belongs to
Date created Time when this session was created
String customName custom user name either set from the web or IVR (PIN)
int disconnectInitiator Shows who initiated a disconnect (user, bridge)
String disconnectReason A string showing detailed info about disconnect
long duration Number of seconds which have elapsed since the session started

and before disconnect
Date joined Time when this session joined to the conference
long role this field determines what role this sessions had.
long sessionId Unique ID assigned by the session
long subscriberId ID of subscriber assigned by the session

Click here to see sessionDR XML and class definition.

http://ftp.wydevoice.com:8021/Classes/Class_SessionDR.htm

 Web Services API
 Programmer’s Guide
21

Chapter 3: Samples of Functions

Wyde Web Services Initialization

Sample of Wyde Web Services Initialization
To use Wyde Web Services, i.e. to call its methods, they should be pre-initialized and pre-
authenticated in your code – you should set web services URL (http://<Wyde bridge
domain>/dnca/jAdmin), user name (subscriber PIN) and password that should be used in
the authentication.

Click here to see sample of the web services initialization source code and configuration
file.

Subscribers Management

Sample of Subscriber and his Conference Accounts Creation
Let’s review the following scenario:
x we need to create the subscriber;
x when we create the subscriber we need to create three conference accounts (conference

users) – the first for moderator, the second for participant, and the third for listener.

To implement this scenario it is necessary to use web method createSubscriber. This
method allows not only creation of subscribers, but this method also can be used to create
conference accounts (conference users) with their attributes that belong to the subscribers.

Click here to see sample of the source code, XML requests and responses, screenshots.

Sample of Subscribers Filtering, Modifications, Conference Accounts
Modifications
Let’s review the following scenario:
x we need to find the subscriber that was created in the previous sample using his pin;
x for the selected subscriber we need to modify his password and email;
x for the selected subscriber we need to remove his conference accounts (conference

users) with the listener role;
x for the selected subscriber we need to define some custom attributes as well as change

access code for his conference accounts with host role.

To implement this scenario it is necessary to use web methods getSubscribers and
updateSubscriber. The getSubscribers method is used to filter the subscribers based on
different criteria. The updateSubscriber method allows not only modification of subscriber’
properties, but this method also can be used to create, modify or delete conference accounts
(conference users) with their attributes that belong to this subscriber.

Click here to see sample of the source code, XML requests and responses, screenshots.

http://ftp.wydevoice.com:8021/Samples/Sample_Init/Sample_Init.htm
http://ftp.wydevoice.com:8021/Samples/Sample_Init/Sample_Init.htm
http://ftp.wydevoice.com:8021/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.htm
http://ftp.wydevoice.com:8021/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.htm

 Web Services API
 Programmer’s Guide
22

Sample of Subscribers Filtering and Deletion
Let’s review the following scenario:
x we need to find out all subscribers who have emails from domain “manage.com”;
x for each of these subscribers if the subscriber does not have phone number we need to

delete him.

To implement this scenario it is necessary to use web methods getSubscribers (to filter the
subscribers) and deleteSubscriber (to delete the selected subscriber).

Click here to see sample of the source code, XML requests and responses, screenshots.

Sample of Getting Conference Users Information
Let’s review the following scenario:
x we need to count conference users (accounts) with for SPECTEL call flow;
x we need to get all conference users (accounts) with for SPECTEL call flow with host

role;
x we need to output subscriber ID, conference number, access code for them.

To implement this scenario it is necessary to use web methods getCallFlows (to filter the
call flows), getDNISes (to filter the DNISes), getConfusersCount (to get the number of
conference users based on criteria) and getConfusers (to filter the conference users based
on criteria).

Click here to see sample of the source code, XML requests and responses, screenshots.

Conferences and Calls Management

Sample of Conferences Filtering, Changes Secure Mode, Dropping the
Conferences
Let’s review the following scenario:
x we need to count how many conferences are currently on the bridge;
x for the selected subscriber we need to drop all conferences if the participants count less

than two;
x for unsecured conferences for the selected subscriber with two participants we need to

make them secure.

To implement this scenario it is necessary to use web methods getConferencesCount (to get
the number of active conferences based on criteria), getConferences (to filter the
conferences based on different criteria), hangupConference (to hang-up the selected
conference, i.e. to drop all conference calls and terminate the conference),
secureConference (to make the conference secure, i.e. to move the conference into the state
when no new calls are allowed to get in there).

Click here to see sample of the source code, XML requests and responses, screenshots.

http://ftp.wydevoice.com:8021/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.htm
http://ftp.wydevoice.com:8021/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.htm
http://ftp.wydevoice.com:8021/Samples/Sample_ManageConference1/Sample_ManageConference1.htm

 Web Services API
 Programmer’s Guide
23

Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A
Sessions and Conference Recording
Let’s review the following scenario:
x we need to place the specific conference (the conference with specific conference

number) on hold;
x we need to wait 1 minute and take this conference off hold;
x after that we need to start conference recording and start Q&A session for this

conference;
x we need to wait 1 minute, we assume that conference participants requested to ask

questions during this minute;
x we need to let the first participant ask his question (i.e. un-mute him - engage his Q&A

session);
x we need to wait 1 minute and then complete the first participant question, i.e. disengage

his Q&A session;
x we need to stop Q&A session and stop conference recording for this conference.

To implement this scenario it is necessary to use web methods getConferences (to filter the
conferences based on different criteria), getSessions (to filter the conference calls based on
different criteria), holdConference (to place the conference on hold), unHoldConference (to
take the conference off hold), muteConference (to start and stop Q&A session for the
conference), qaEngage (to engage Q&A session for the conference participant, i.e. to un-
mute the participant), qaDisengage (to disengage Q&A session for the conference
participant, i.e. to mute the participant after he asked his question),
startConferenceRecording (to start the conference recording), stopConferenceRecording (to
stop the conference recording).

Click here to see sample of the source code, XML requests and responses, screenshots.

Sample of Calls Filtering, Mute the Calls, Dropping the Calls
Let’s review the following scenario:
x we need to count how many calls are currently on the bridge;
x for the selected subscriber we need to drop all participants calls if the call duration

greater than 10 minutes;
x for remaining participants of the selected subscriber (with call duration less than 10

minutes) we need to mute their calls.

To implement this scenario it is necessary to use web methods getSessionsCount (to get the
number of active calls based on criteria), getSessions (to filter the calls based on different
criteria), hangupSession (to drop/disconnect the specific call), muteSession (to mute the
specific call participant).

Click here to see sample of the source code, XML requests and responses, screenshots.

Sample of Setting Custom Name and Placing Calls on Hold
Let’s review the following scenario:

http://ftp.wydevoice.com:8021/Samples/Sample_ManageConference2/Sample_ManageConference2.htm
http://ftp.wydevoice.com:8021/Samples/Sample_ManageCall1/Sample_ManageCall1.htm

 Web Services API
 Programmer’s Guide
24

x for the conference with specific conference number we need to set custom name for the
host “conference moderator”;

x for the same conference we need to place all listeners and participants on hold.

To implement this scenario it is necessary to use web methods getSessions (to filter the
calls based on different criteria), setCustomName (to set the custom name for the specific
call participant), holdSession (to place the call/participant on hold).

Click here to see sample of the source code, XML requests and responses, screenshots.

CDRs Management

Sample of Getting Conferences Historical Information
Let’s review the following scenario:
x we need to count how many conferences were on the bridge from the beginning of the

month;
x for the selected subscriber we need to output his current month conferences information

(conference number, conference ID, date and time when the conference occurred,
duration, participants count, and info about recording URL if exists), ordered by
conference number and conference date.

To implement this scenario it is necessary to use web methods getConferenceDRsCount (to
return number of ConferenceDRs, i.e. historical conference information, stored in local
CDR database based on criteria), getConferenceDRs (to filter the historical conference
information based on different criteria).

Click here to see sample of the source code, XML requests and responses, screenshots.

Sample of the Shared Recording Generation
In the previous sample (Sample of Getting Conferences Historical Information) we get
conferences with recording. Let’s review the following scenario:
x we need to generate recording URL link, that will allow user to download conference

recording without authorization during the next hour (for the conference with recording
referenced by the conferenceId, that was found in the previous sample);

x we need to output the ConferenceDR object information prior and after shared
recording URL generation to see the differences in the object properties.

To implement this scenario it is necessary to use web methods shareRecording (to generate
shared recording, i.e. recording URL that will be available without authorization) and
getConferenceDR (to get the single historical conference information based on the
conference identifier).

Click here to see sample of the source code, XML requests and responses, screenshots.

Sample of Getting Calls Historical Information
Let’s review the following scenario:

http://ftp.wydevoice.com:8021/Samples/Sample_ManageCall2/Sample_ManageCall2.htm
http://ftp.wydevoice.com:8021/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.htm
http://ftp.wydevoice.com:8021/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.htm

 Web Services API
 Programmer’s Guide
25

x we need to count how many calls were on the bridge from the beginning of the month
for the specific conference number;

x for the specific conference number we need to output current month conference calls
information (conference number, conference ID, date and time when the call occurred,
duration, called number, calling number, custom name, disconnect reason;

x if number of calls to output greater than 5, we should implement paging and output 5
calls on the page.

To implement this scenario it is necessary to use web methods getSessionDRsCount (to
return number of SessionDRs, i.e. historical calls/sessions information, stored in local CDR
database based on criteria), getSessionDRs (to filter the historical calls information based
on different criteria).

Click here to see sample of the source code, XML requests and responses, screenshots.

http://ftp.wydevoice.com:8021/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.htm

 Web Services API
 Programmer’s Guide
26

Chapter 4: Function Reference

Subscribers Management
x getSubscriber (long subscriberId) – Returns full information about the

Subscriber with the given ID.
Parameters:

subscriberId – The Subscriber identifier
Returns:

Subscriber object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x getSubscribers (long offset, long limit, String filter,
String order) – This function returns list of Subscribers that match filter. Offset
and limit allow to implement paging on the web server. Please note that field confusers
in Subscriber will not be populated to avoid huge amount of data to be transferred in
case if big request is processed Subscriber objects.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more Subscriber field names.
 Acceptable operators: <= , >= , != , = , < , > , like *
 For example login='12' or login like'%2%' or subscriberId >= 15.
 Empty string or null means no filter.
order - A string specifying Subscriber field name and sort direction.
 For example "login" or "email desc". The default direction is asc and can be

omitted.
 Empty string or null means no order.
Acceptable fields:
 • subscriberId
 • parentId
 • pin
 • password
 • firstName
 • lastName
 • email
 • address1
 • city
 • country
 • phoneNumber

Returns:
list of Subscriber objects

Throws Exceptions:

 Web Services API
 Programmer’s Guide
27

ServerException
AccessDeniedException

x getSubscribersCount (String filter) – Returns count of Subscribers
that match the given filter.
Parameters:

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more Subscriber field names.

 Acceptable operators: <= , >= , != , = , < , > , like
 For example login='12' or login like'%2%' or subscriberId >= 15.
Acceptable fields:
 • subscriberId
 • parentId
 • pin
 • password
 • firstName
 • lastName
 • email
 • address1
 • city
 • country
 • phoneNumber
 Empty string or null means no filter.

Returns:
long count of Subscribers

Throws Exceptions:
ServerException
AccessDeniedException

x createSubscriber (Subscriber s) – Creates a Subscriber. Pay attention to
the list of mandatory fields to be filled in.
Parameters:

s – The Subscriber object
Returns:

created Subscriber object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectValidationException

x updateSubscriber (Subscriber s) – Updates a Subscriber whose ID is
presented in s with the information from the structure. Please make sure you filled all
information that needs to be in the updated Subscriber. Recommendation is to call
getSubscriber first, change some info and then call updateSubscriber.
Parameters:

s – The Subscriber object
Returns:

updated Subscriber object
Throws Exceptions:

 Web Services API
 Programmer’s Guide
28

ServerException
AccessDeniedException
ObjectValidationException

x deleteSubscriber (long subscriberId) – Deletes a Subscriber with the
given ID and all subordinate Confusers.
Parameters:

subscriberId – The Subscriber identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x generateSubscriberPin () – This function returns unique Subscriber pin with
respect to codes registered on the local server. This function is helpful for
createSubscriber and createConfuser.
Returns:

string Pin Code which is a 6 digit number. For example: 215246.
Throws Exceptions:

ServerException
AccessDeniedException

x generateAccessCode () – This function returns unique access code with respect
to codes registered on the local server. This function is helpful for
createSubscriber and createConfuser.
Returns:

string Access Code which is a 6 digit number. For example: 346217.
Throws Exceptions:

ServerException
AccessDeniedException

Subscribers’ Conference Users Management
x getConfuser (long confuserId) – This function returns full details about the

Confuser referenced by ID.
Parameters:

confuserId – The Confuser identifier
Returns:

Confuser object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x getConfusers (long offset, long limit, String filter,
String order) – This function returns the list of Confuser which match the given

 Web Services API
 Programmer’s Guide
29

filter. There are rare cases when this function needs to be called directly as
getSubscriber returns list of subordinate conference users.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more Confuser field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example login='12' or login like'%2%' or subscriberId >= 15.
 Empty string or null means no filter.
order - A string specifying Subscriber field name and sort direction.
 For example "login" or "email desc". The default direction is asc and can be

omitted.
Empty string or null means no order.
Acceptable fields:
 • subscriberId
 • confuserId
 • role
 • dnisId
 • accessCode
 • conferenceNumber

Returns:
list of Confuser objects

Throws Exceptions:
ServerException
AccessDeniedException

x getConfusersCount (String filter) – This function returns number of
Confusers that match the given filter.
Parameters:

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more Confuser field names.

 Acceptable operators: <= , >= , != , = , < , > , like
 For example login='12' or login like'%2%' or subscriberId >= 15.
Acceptable fields:
 • subscriberId
 • confuserId
 • role
 • dnisId
 • accessCode
 • conferenceNumber
Empty string or null means no filter.

Returns:
long count of Confusers

Throws Exceptions:
ServerException
AccessDeniedException

 Web Services API
 Programmer’s Guide
30

x createConfuser (Confuser confuser) – This function creates a new
Confuser. Please note that you can create Confusers by calling createSubscriber
and providing list of Confusers there.
Parameters:

confuser – The Confuser object
Required fields:
 • subscriberId
 • role
 • dnisId
 • accessCode
 • conferenceInfo

Returns:
created Confuser object

Throws Exceptions:
ServerException
AccessDeniedException
ObjectValidationException

x updateConfuser (Confuser confuser) – This function updates Confuser
which is presented in confuser with the information from the structure. Please make
sure you filled all information that needs to be in the updated Confuser.
Recommendation is to call getConfuser first, change some info and then call
updateConfuser.
Parameters:

confuser – The Confuser object
Returns:

updated Confuser object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectValidationException

x deleteConfuser (long confuserId) – This function deletes Confuser
referenced by the ID.
Parameters:

confuserId – The Confuser identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

Conferences and Calls Management
x getConference (long conferenceId) – This function returns full details

about the Conference referenced by the ID.
Parameters:

 Web Services API
 Programmer’s Guide
31

conferenceId – The Conference identifier
Returns:

Conference object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x getConferences (long offset, long limit, String filter,
String order) – This function returns list of Conferences which are registered for
the subscriber on which behalf this call is executed.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more Conference field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example number='12' or number like'%2%' or duration >= 15.
Accepted fields:
 • conferenceId
 • number
 • created ('yyyy.MM.dd/hh:mm' format)
 • duration
 • participantCnt
 • isSecured
 • muteMode
 Empty string or null means no filter.
order - A string specifying Conference field name and sort direction.
 For example "number" or "created desc". The default direction is asc and can be

omitted.
 Empty string or null means no order.

Returns:
list of Conference objects

Throws Exceptions:
ServerException
AccessDeniedException

x getConferencesCount (String filter) – This function returns number of
Conferences currently running on the server.
Parameters:

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more Conference field names.

 Acceptable operators: <= , >= , != , = , < , > , like
 For example number='12' or number like'%2%' or duration >= 15.
Accepted fields:
 • conferenceId
 • number
 • created ('yyyy.MM.dd/hh:mm' format)

 Web Services API
 Programmer’s Guide
32

 • duration
 • participantCnt
 • isSecured
 • muteMode
 Empty string or null means no filter.

Returns:
long count of Conference objects

Throws Exceptions:
ServerException
AccessDeniedException

x getSession (long sessionId) – This function returns full details about the
call referenced by the ID provided.
Parameters:

sessionId – The Session identifier
Returns:

Session object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x getSessions (long conferenceId, long offset, long limit,
String filter, String order) – This function returns list of Sessions (calls)
which match the filter provided. There are two parameters offset and limit which help
to implement paging on the web application. If this function is called from non admin
Subscribers it will returns only Sessions visible for this account. If call doesn’t present
an access code yet – it is visible only by admin.
Parameters:

conferenceId - Conference identifier. If parameter is less than zero Session objects
for all Conference will be returned.

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more Session field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example addressTo='12' or addressTo like'%2%' or duration >= 15.
Accepted fields:
 • sessionId
 • subscriberId
 • created ('yyyy.MM.dd/hh:mm' format)
 • joined ('yyyy.MM.dd/hh:mm' format) (works only when joined the conference)
 • duration
 • status
 • role (works only when joined the conference)
 • isMuted (works only when joined the conference) true/false values
 • addressTo
 • addressFrom

 Web Services API
 Programmer’s Guide
33

 • conferenceNumber (works only when joined the conference)
 • accessCode (works only when joined the conference)
 Empty string or null means no filter.
order - A string specifying Session field name and sort direction.
 For example "caller" or "caller desc". The default direction is asc and can be

omitted.
 Empty string or null means no order.

Returns:
list of Session objects

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x getSessionsCount (long conferenceId, String filter) – This
function returns number of calls on the bridge which matches the filter provided.
Parameters:

conferenceId - Conference identifier. If parameter is less than zero Session objects
for all Conference will be counted.

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more Session field names.

 Acceptable operators: <= , >= , != , = , < , > , like
 For example caller='12' or caller like'%2%' or duration >= 15.
Accepted fields:
 • sessionId
 • subscriberId
 • created ('yyyy.MM.dd/hh:mm' format)
 • joined ('yyyy.MM.dd/hh:mm' format) (works only when joined the conference)
 • duration
 • status
 • role (works only when joined the conference)
 • isMuted (works only when joined the conference) true/false values
 • addressTo
 • addressFrom
 • conferenceNumber (works only when joined the conference)
 • accessCode (works only when joined the conference)
 Empty string or null means no filter.

Returns:
long count of Session objects

Throws Exceptions:
ServerException
AccessDeniedException

x hangupConference (long conferenceId) – This function causes all calls to
be dropped from the Conference and Conference to be terminated.
Parameters:

conferenceId – The Conference identifier
Returns:

 Web Services API
 Programmer’s Guide
34

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x hangupSession (long sessionId) – This function disconnects the call
reference by the ID. If called not from admin account may return NonAuthorised
exception.
Parameters:

sessionId – The Session identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x secureConference (long conferenceId) – This function moves a
Conference referenced by ID into the state when no new calls are allowed to get in
there.
Parameters:

conferenceId – The Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x unSecureConference (long conferenceId) – This function cancels effect
of secureConfernece, i.e. new calls can join the Conference.
Parameters:

conferenceId – The Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x holdConference (long conferenceId) – This function places the
conference on hold.
Parameters:

conferenceId – The Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException

 Web Services API
 Programmer’s Guide
35

ObjectNotFoundException
x unHoldConference (long conferenceId) – This function places the

conference off hold.
Parameters:

conferenceId – The Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x holdSession (long sessionId) – This function places the call on hold.
Parameters:

sessionId – The Session identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x unHoldSession (long sessionId) – This function places the call off hold.
Parameters:

sessionId – The Session identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x muteConference (long conferenceId, long mode) – This function
mutes all participants (it doesn’t touch moderators). There are 3 mute modes Open (0) –
this is when all can speak or mute themselves Relaxed (1) – this is when all participants
muted, but they can un-mute themselves Strict (2) – this is when participants cannot un-
mute themselves. If Q&A is enabled they can put themselves into the question queue so
moderator can pick a questioner.
Parameters:

conferenceId – The Conference identifier
mode – The mute mode

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x muteSession (long sessionId) – This function should be called when the
call referenced by ID should be muted.

 Web Services API
 Programmer’s Guide
36

Parameters:
sessionId – The Session identifier

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x unMuteSession (long sessionId) – This function should be called when the
call referenced by ID should be un-muted.
Parameters:

sessionId – The Session identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x setCustomName (long sessionId, String name) – Sets custom name of
the caller referenced by ID.
Parameters:

sessionId – The Session identifier
name – The custom name of the caller

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x qaEngage (long sessionId) – Engages Q&A session for the conference
participant referenced by ID.
Parameters:

sessionId – The Session identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x qaDisengage (long sessionId) – Disengages Q&A session for the
conference participant referenced by ID.
Parameters:

sessionId – The Session identifier
Returns:

void
Throws Exceptions:

 Web Services API
 Programmer’s Guide
37

ServerException
AccessDeniedException
ObjectNotFoundException

x startConferenceRecording (long conferenceId) – This function starts
the conference recording.
Parameters:

conferenceId – The Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x stopConferenceRecording (long conferenceId) – This function stops
the conference recording.
Parameters:

conferenceId – The Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x dialout (String phoneNumber, long confuserId, String
attributes) – This function initiates outgoing call to the specified phone number
and tries to connect participant to the specific conference.
Parameters:

phoneNumber – The phone number to dial-out
confuserId – The identifier of Confuser which role and access code will be used
attributes – The custom attributes (reserved field)

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
ObjectValidationException

x dialoutEx (String calledNumber, String conferenceDID, long
conferenceNumber, String accessCode) – This function initiates outgoing
call to specified phone number and tries to connect participant to the specified
conference.
Parameters:

calledNumber – The phone number to dial-out
conferenceDID – The bridge phone number the participant has to be connected to
conferenceNumber – The actual conference number

 Web Services API
 Programmer’s Guide
38

accessCode – The actual access code that should be used to connect to the
conference

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
ObjectValidationException

x startScan (long conferenceId) – This function starts conference
monitoring (surveillance call) for the operator conference referenced by ID (the same as
*1 on touch tone keypad).
Parameters:

conferenceId – The Operator Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x stopScan (long conferenceId) – This function stops conference monitoring
(surveillance call) for the operator conference referenced by ID.
Parameters:

conferenceId – The Operator Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x startListen (long conferenceId, long targetId) – This function
connects and starts listen the conference referenced by ID in the second parameter for
the operator conference referenced by ID in the first parameter (the same as *4 on touch
tone keypad).
Parameters:

conferenceId – The Operator Conference identifier
targetId – The target Conference identifier (the conference to listen)

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x stopListen (long conferenceId) – This function stops listen the conference
for the operator conference referenced by ID.
Parameters:

 Web Services API
 Programmer’s Guide
39

conferenceId – The Operator Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x dropTalk (long conferenceId) – This functions stops current conversation
with the connected user for the operator conference referenced by ID and returns the
user to his conference or ivr (the same as *3 on touch tone keypad); the operator is
ready to process the next user.
Parameters:

conferenceId – The Operator Conference identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

CDRs Management
x getConferenceDR (long conferenceId) – This function returns full details

about the ConferenceDR referenced by the ID.
Parameters:

conferenceId – The Conference identifier
Returns:

ConferenceDR object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x getConferenceDRs (long offset, long limit, String filter,
String order) – This function returns list of ConferenceDRs which are registered
for the subscriber. For administrator it returns whole list of records.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more ConferenceDR field names.
Acceptable operators: <= , >= , != , = , < , > , like
For example:
 conferenceId = 5424
 duration > 300 and duration < 400
 duration > 300 and number = 160
 participantCnt > 2 and participantCnt < 22

 Web Services API
 Programmer’s Guide
40

 created > '2008.08.07/00:00'
Accepted fields:
 • conferenceId
 • number
 • created ('yyyy.MM.dd/hh:mm' format)
 • duration
 • participantCnt
 Empty string or null means no filter.
order - A string specifying ConferenceDR field name and sort direction.
 For example "number" or "created desc". The default direction is asc and can be

omitted.
 Empty string or null means no order.

Returns:
list of ConferenceDR objects

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x getConferenceDRsCount (String filter) – This function returns number
of ConferenceDRs stored in local CDR db.
Parameters:

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more ConferenceDR field names.

Acceptable operators: <= , >= , != , = , < , > , like
For example:
 conferenceId = 5424
 duration > 300 and duration < 400
 duration > 300 and number = 160
 participantCnt > 2 and participantCnt < 22
 created > '2008.08.07/00:00'
Accepted fields:
 • conferenceId
 • number
 • created ('yyyy.MM.dd/hh:mm' format)
 • duration
 • participantCnt
Empty string or null means no filter.

Returns:
long count of ConferenceDR objects

Throws Exceptions:
ServerException
AccessDeniedException

x getSessionDR (long sessionId) –This function returns full details about the
SessionDR referenced by the ID.
Parameters:

sessionId – The Session identifier

 Web Services API
 Programmer’s Guide
41

Returns:
SessionDR object

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x getSessionDRs (long offset, long limit, String filter,
String order) – This function returns list of SessionDRs allowed to view.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more SessionDR field names.
Acceptable operators: <= , >= , != , = , < , > , like
For example:
 conferenceId = 5424
 created > '2008.08.10/00:00' and created lt; '2008.08.20/00:00'
Accepted fields:
 • conferenceId
 • number
 • created ('yyyy.MM.dd/hh:mm' format)
 • duration
 • role
 • joined
 • customName
 • caller;
 • calle;
 • addressFrom;
 • addressTo;
 • conferenceNumber;
 • accessCode;
 • disconnectReason;
Empty string or null means no filter.
order - A string specifying SessionDR field name and sort direction.
 For example "created desc". The default direction is asc and can be omitted.
Empty string or null means no order.

Returns:
list of SessionDR objects

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x getSessionDRsCount (String filter) – This function returns number of
SessionDRs stored in local CDR db.
Parameters:

 Web Services API
 Programmer’s Guide
42

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more SessionDR field names.

Acceptable operators: <= , >= , != , = , < , > , like
For example:
 conferenceId = 5424
 created > '2008.08.10/00:00' and created < '2008.08.20/00:00'
Accepted fields:
 • conferenceId
 • number
 • created ('yyyy.MM.dd/hh:mm' format)
 • duration
 • role
 • joined
 • customName
 • caller;
 • calle;
 • addressFrom;
 • addressTo;
 • conferenceNumber;
 • accessCode;
 • disconnectReason;
Empty string or null means no filter.

Returns:
long count of SessionDR objects

Throws Exceptions:
ServerException
AccessDeniedException

x listAudioFiles (long confNumber, String patter) – This function
returns the list of user’s audio files (recordings and uploaded streaming audio-files)
according to the specified pattern and conference number.
Parameters:

confNumber – The conference number (note: it is not conferenceId)
pattern – The filename wildcard pattern

Returns:
list of FileDescriptor objects

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

x deleteAudioFiles (long confNumber, String patter) – This
function deletes user’s audio files (recordings and uploaded streaming audio) according
to the specified pattern and conference number.
Parameters:

confNumber – The conference number (note: it is not conferenceId)
pattern – The filename wildcard pattern

Returns:

 Web Services API
 Programmer’s Guide
43

long number of deleted files
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x updateFileDescriptor (long conferenceNumber,
FileDescriptor fileDescriptor) – This function allows to change the file
description only.
Parameters:

conferenceNumber – The conference number (note: it is not conferenceId)
fileDescriptor – The FileDescriptor object (with correct description) to update

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
ObjectValidationException

x shareRecording (long conferenceId, DateTime expirePeriod,
bool allowDownload) – Usually to get access to the recorded conference files the
user should be authorized on the bridge. This function should be used if it is necessary
to generate the link to the conference audio files that will be available without
authorization; this link will be temporary available and it will be valid limited time
only; using this URL any users will be able to listen (download) recording without
authorization. The recorded files URL is stored in the recordingUrl property of the
ConferenceDR object; the shared recorded files URL, created by this function, is stored
in the sharedRecordingUrl property of the ConferenceDR object.
Parameters:

conferenceId – The Conference identifier reference number
expirePeriod – The period of time over which the shared link will be invalidated
allowDownload – The flag showing whether mp3 download is allowed or

disallowed
Returns:

string shared recording URL
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

Call Flow, DNIS, and Conference Info Management
x getCallFlow (long callFlowId) – This function returns full details about the

CallFlow referenced by the ID provided.
Parameters:

callFlowId – The CallFlow identifier
Returns:

 Web Services API
 Programmer’s Guide
44

CallFlow object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x getCallFlowDirs () – This function returns list of all registered call flow
directories on the current Wyde bridge.
Returns:

list (array) of strings representing the call flow directories
Throws Exceptions:

ServerException
AccessDeniedException

x getCallFlows (long offset, long limit, String filter,
String order) – This function returns list of CallFlows which match the filter
provided. There are two parameters offset and limit to help to implement paging on the
web application. All users can get all CallFlows registered on the bridge. Later there
will be introduced a restriction so users are able to see only those CallFlows which are
assigned to them.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more CallFlow field names.
 Acceptable operators: <= , >= , != , = , < , > , like
 For example name='12' or name like'%2%' or collFlowId >= 15.
Accepted fields:
 • callFlowId
 • name
 • path
 Empty string or null means no filter.
order - A string specifying CallFlow field name and sort direction.
 For example "name" or "name desc". The default direction is asc and can be

omitted.
 Empty string or null means no order.

Returns:
list of CallFlow objects

Throws Exceptions:
ServerException
AccessDeniedException

x getCallFlowsCount (String filter) – This function returns number of
CallFlows on the bridge which match the filter provided.
Parameters:

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more CallFlow field names.

 Acceptable operators: <= , >= , != , = , < , > , like
 For example name='12' or name like'%2%' or collFlowId >= 15.

 Web Services API
 Programmer’s Guide
45

Accepted fields:
 • callFlowId
 • name
 • path
Empty string or null means no filter.

Returns:
long count of CallFlow objects

Throws Exceptions:
ServerException
AccessDeniedException

x getDNIS (long dnisId) – This function returns full details about the DNIS
referenced by the ID provided.
Parameters:

dnisId – The DNIS identifier
Returns:

DNIS object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x getDNISCount (String filter) – This function returns number of DNISes on
the bridge which match the filter provided.
Parameters:

filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more DNIS field names.

 Acceptable operators: <= , >= , != , = , < , > , like
 For example name='12' or name like'%2%' or callFlowId >= 15.
Accepted fields:
 • callFlowId
 • dnisId
 • did
 • description
 Empty string or null means no filter.

Returns:
long count of DNIS objects

Throws Exceptions:
ServerException
AccessDeniedException

x getDNISes (long offset, long limit, String filter, String
order) – This function returns list of DNISes (phone numbers) which match the filter
provided.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more DNIS field names.

 Web Services API
 Programmer’s Guide
46

 Acceptable operators: <= , >= , != , = , < , > , like
 For example name='12' or name like'%2%' or callFlowId >= 15.
 Empty string or null means no filter.
order - A string specifying DNIS field name and sort direction.
 For example "name" or "name desc". The default direction is asc and can be

omitted.
Accepted fields:
 • callFlowId
 • dnisId
 • did
 • description
 Empty string or null means no order.

Returns:
list of DNIS objects

Throws Exceptions:
ServerException
AccessDeniedException

x createCallFlow (CallFlow cf) – The method creates CallFlow object. Note:
this function is deprecated and probably will not be included in next versions; it is not
recommended to use this function.
Parameters:

cf – The CallFlow object
Returns:

created CallFlow object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectValidationException

x updateCallFlow (CallFlow cf) – The method updates CallFlow object.
Parameters:

cf – The CallFlow object
Returns:

updated CallFlow object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectValidationException

x deleteCallFlow (long callFlowId) – This function deletes CallFlow
referenced by the ID. Note: this function is deprecated and probably will not be
included in next versions; it is not recommended to use this function.
Parameters:

callFlowId – The CallFlow identifier
Returns:

void
Throws Exceptions:

ServerException

 Web Services API
 Programmer’s Guide
47

AccessDeniedException
ObjectNotFoundException

x createDNIS (DNIS dnis) – This function creates a new DNIS with the details
specified in the input parameter. Please note that only administrator can create new
DNISes.
Parameters:

dnis – The DNIS object
Returns:

created DNIS object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectValidationException

x updateDNIS (DNIS dnis) – This function updates DNIS with the new
information. Please note that only administrator has a permission to update DNIS.
Parameters:

dnis – The DNIS object
Returns:

updated DNIS object
Throws Exceptions:

ServerException
AccessDeniedException
ObjectValidationException

x deleteDNIS (long dnisId) – This function deletes DNIS referenced by the ID
from the server. Please note that only administrator has a permission to delete DNIS.
Parameters:

dnisId – The DNIS identifier
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x getServerAttributes () – This function returns list of system attributes
registered on the bridge along with the current values, i.e. separate Attribute Name –
Attribute Value pairs.
Returns:

list of attributes (Attribute objects)
Throws Exceptions:

ServerException
AccessDeniedException

x setServerAttributes (List<Attribute> attributes) – This function
allows setting new values to the system attributes, i.e. separate Attribute Name –
Attribute Value pairs.
Parameters:

attributes – The list of Attribute objects that need to be updated

 Web Services API
 Programmer’s Guide
48

Returns:
void

Throws Exceptions:
ServerException
AccessDeniedException
ObjectValidationException

x getAttributesDescription (long id) – This function returns the
collection of Attribute Name – Attribute Description pairs for the specified CallFlow
object (actually the list of allowed attributes with descriptions).
Parameters:

id – The CallFlow identifier
Returns:

list of Attribute Name – Attribute Description pairs
Throws Exceptions:

ServerException
AccessDeniedException
ObjectNotFoundException

x getConferenceNumbers () – This function returns the list of registered
ConfInfo objects in the client’s scope (for admin subscriber it returns the information
about all ConfInfo objects, for non admin subscriber it returns the information about
ConfInfo objects available for this subscriber only).
Returns:

list of ConfInfo objects
Throws Exceptions:

ServerException
AccessDeniedException

Backend and Frontend Services Management
x getVersion () – Returns version of the installed software (like 1.4.31 for the

current version).
Returns:

string product version
Throws Exceptions:

ServerException
AccessDeniedException
ObjectValidationException

x getBackendInfo () – Returns some statistic about backend.
Returns:

string status of Backend Service in the textual format
Throws Exceptions:

ServerException
AccessDeniedException

x getFrontendInfo (String group) – Returns some statistic about frontend.
Parameters:

 Web Services API
 Programmer’s Guide
49

group – group name, for example confcount, confsize, cmdcount, partcount etc
(service functions)

Returns:
string status of Frontend Service in the textual format

Throws Exceptions:
ServerException
AccessDeniedException

x isBackendUp () – Returns true if backend is up and running.
Returns:

Boolean true if Backend Service is OK, otherwise – false
Throws Exceptions:

ServerException
AccessDeniedException

x isFrontendUp () – Returns true if frontend is up and running and state can not be
determined.
Returns:

Boolean true if frontend is up and running, otherwise – false
Throws Exceptions:

ServerException
AccessDeniedException

x startBackend () – Tries to start backend with the settings from the DB.
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException

x stopBackend () – Tries to stop backend.
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException

x startFrontend () – Tries to start frontend with the settings from the DB.
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException

x stopFrontend () – Tries to stop frontend.
Returns:

void
Throws Exceptions:

ServerException
AccessDeniedException

 Web Services API
 Programmer’s Guide
50

Exceptions
x ServerException – This exception is thrown to indicate that internal server-side

error occurred.
x AccessDeniedException – This exception is thrown to indicate that a requested

access (to an object or method) is denied. The request access can be denied according to
the security policy.

x ObjectNotFoundException – This exception is thrown to indicate that requested
object can not be found.

x ObjectValidationException – This exception is thrown to indicate that
specified object can not be saved in its current state. Exception contains the collection
of field names that should be checked in fieldname property. There are two possible
reasons: this field is mandatory (if current value is null) or incorrect value.

If any of these exceptions occurred for all these exceptions msg property contains detail
description of the error, i.e. the message that could help to determine the reason of the error.

Constants
x Subscriber

public static int ROLE_ADMIN = 1L
public static int ROLE_OPERATOR = 2L
public static int ROLE_USER = 3L

x Conference
public static long MUTE_MODE_CLOSED = 2L
public static long MUTE_MODE_OPEN = 0L
public static long MUTE_MODE_QUESTION = 1L
public static long CONFERENCE_REGULAR = 0L
public static long CONFERENCE_OPERATOR = 1L
public static long CONFERENCE_LISTEN = 2L
public static long CONFERENCE_AUTOLISTEN = 3L
public static long CONFERENCE_AUTOLISTEN_SLEEP = 4L

x Session
public static long INCOMING = 0L
public static long MODE_HOST = 1L
public static long MODE_LISTENER = 3L
public static long MODE_PARTICIPANT = 2L
public static long MODE_UNDEFINED = 0L
public static long OUTGOING = 1L
public static long OPERATOR_STATUS_IDLE = 0L
public static long OPERATOR_STATUS_WAIT = 1L
public static long OPERATOR_STATUS_TALK = 2L
public static long QA_STATUS_ACTIVE = 2L
public static long QA_STATUS_IDLE = 0L
public static long QA_STATUS_RISEDHAND = 1L
public static long STATUS_CLOSED = 3L

 Web Services API
 Programmer’s Guide
51

public static long STATUS_CONFERENCE = 2L
public static long STATUS_DIALING = 4L
public static long STATUS_IVR = 1L

x SessionDR
public static long INITIATOR_BRIDGE = 2L
public static long INITIATOR_UNDEFINED = 0L
public static long INITIATOR_USER = 1L

x Attribute
public static long TYPE_DTMF = 3L
public static long TYPE_INT = 2L
public static long TYPE_STRING = 0L

 Web Services API
 Programmer’s Guide
52

Appendix A: Support Resources
During installation, if you have difficulty with any of the installation procedures listed
herein, please contact us using the following support resources.

Support Documentation
In addition to this Installation Guide, you may obtain the Wyde Voice Administration
Guide from Wyde Voice or from the support section of http://www.wydevoice.com/.

Web Support
Our support website is available 24 hours a day, 7 days a week, and 365 days a year at
http://www.wydevoice.com. You may download patches, support documentation and other
technical support information.

Telephone Support
For difficulties with installation, please contact us at 866-508-9020 during our normal
phone support hours of 7:00 am to 6:00 pm Pacific Standard Time (PST). An engineer will
respond to your inquiry within 24 hours.

Email Support
You may also email us your questions at support@wydevoice.com. We will respond to
your question within 24 hours.

http://www.wydevoice.com/
http://www.wydevoice.com/
mailto:support@wydevoice.com

	
	Web Service API –
	Programmer’s Guide
	(version 1.4.31)
	 Disclaimer
	THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.
	THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR WIDE VOICE REPRESENTATIVE FOR A COPY.
	IN NO EVENT SHALL WIDE VOICE OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF WIDE OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
	Copyright
	Except where expressly stated otherwise, the Product is protected by copyright and other laws respecting proprietary rights. Unauthorized reproduction, transfer, and or use can be a criminal, as well as civil, offense under the applicable law.
	Wide Voice and the Wide Voice logo are registered trademarks of Wide Voice LLC in the United States of America and other jurisdictions. Unless otherwise provided in this Documentation, marks identified with “R” / ®, “TM” / ™ and “SM” are registered marks; trademarks are the property of their respective owners.
	For the most current versions of documentation, go to the Wide support Web site:
	Symbols and Notations in this Manual
	 Table of Contents
	Symbols and Notations in this Manual 3
	Table of Contents 4
	Tables List 6
	Figures List 7
	Chapter 1: Introduction 8
	Assumed Skills 8
	Web Services 9
	Definitions 9
	Chapter 2: Data Structures 13
	General Data Structure 13
	Data Classes (Entities) 15
	Subscriber 15
	Conference Account – Conference User 15
	Conference Info 16
	DNIS 16
	Call Flow 17
	Attribute 17
	Conference 18
	ConferenceDR 18
	Session 19
	SessionDR 19
	Chapter 3: Samples of Functions 21
	Wyde Web Services Initialization 21
	Sample of Wyde Web Services Initialization 21
	Subscribers Management 21
	Sample of Subscriber and his Conference Accounts Creation 21
	Sample of Subscribers Filtering, Modifications, Conference Accounts Modifications 21
	Sample of Subscribers Filtering and Deletion 22
	Sample of Getting Conference Users Information 22
	Conferences and Calls Management 22
	Sample of Conferences Filtering, Changes Secure Mode, Dropping the Conferences 22
	Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A Sessions and Conference Recording 23
	Sample of Calls Filtering, Mute the Calls, Dropping the Calls 23
	Sample of Setting Custom Name and Placing Calls on Hold 23
	CDRs Management 24
	Sample of Getting Conferences Historical Information 24
	Sample of the Shared Recording Generation 24
	Sample of Getting Calls Historical Information 24
	Chapter 4: Function Reference 26
	Subscribers Management 26
	Subscribers’ Conference Users Management 28
	Conferences and Calls Management 30
	CDRs Management 39
	Call Flow, DNIS, and Conference Info Management 43
	Backend and Frontend Services Management 48
	Exceptions 50
	Constants 50
	Appendix A: Support Resources 52
	Support Documentation 52
	Web Support 52
	Telephone Support 52
	Email Support 52
	Table 1: Properties of Subscriber 15
	Table 2: Properties of Confuser 16
	Table 3: Properties of ConfInfo 16
	Table 4: Properties of DNIS 16
	Table 5: Properties of CallFlow 17
	Table 6: Properties of Attribute 17
	Table 7: Properties of Conference 18
	Table 8: Properties of ConferenceDR 19
	Table 9: Properties of Session 19
	Table 10: Properties of SessionDR 20
	Figure 1: The Web Services Architecture 9
	Figure 2: The UML Class Diagram 14
	Chapter 1: Introduction
	Assumed Skills
	Web Services

	Figure 1: The Web Services Architecture
	Definitions

	 Chapter 2: Data Structures
	General Data Structure

	Figure 2: The UML Class Diagram
	Data Classes (Entities)
	Subscriber

	Table 1: Properties of Subscriber
	Conference Account – Conference User

	Table 2: Properties of Confuser
	Conference Info

	Table 3: Properties of ConfInfo
	DNIS

	Table 4: Properties of DNIS
	Call Flow

	Table 5: Properties of CallFlow
	Attribute

	Table 6: Properties of Attribute
	Conference

	Table 7: Properties of Conference
	ConferenceDR

	Table 8: Properties of ConferenceDR
	Session

	Table 9: Properties of Session
	SessionDR

	Table 10: Properties of SessionDR
	 Chapter 3: Samples of Functions
	Wyde Web Services Initialization
	Sample of Wyde Web Services Initialization

	Subscribers Management
	Sample of Subscriber and his Conference Accounts Creation
	Sample of Subscribers Filtering, Modifications, Conference Accounts Modifications
	Sample of Subscribers Filtering and Deletion
	Sample of Getting Conference Users Information

	Conferences and Calls Management
	Sample of Conferences Filtering, Changes Secure Mode, Dropping the Conferences
	Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A Sessions and Conference Recording
	Sample of Calls Filtering, Mute the Calls, Dropping the Calls
	Sample of Setting Custom Name and Placing Calls on Hold

	CDRs Management
	Sample of Getting Conferences Historical Information
	Sample of the Shared Recording Generation
	Sample of Getting Calls Historical Information

	 Chapter 4: Function Reference
	Subscribers Management
	Subscribers’ Conference Users Management

	Conferences and Calls Management
	CDRs Management
	Call Flow, DNIS, and Conference Info Management
	Backend and Frontend Services Management
	Exceptions
	Constants

	 Subscriber
	public static int ROLE_ADMIN = 1L
	public static int ROLE_OPERATOR = 2L
	public static int ROLE_USER = 3L
	 Conference
	public static long MUTE_MODE_CLOSED = 2L
	public static long MUTE_MODE_OPEN = 0L
	public static long MUTE_MODE_QUESTION = 1L
	public static long CONFERENCE_REGULAR = 0L
	public static long CONFERENCE_OPERATOR = 1L
	public static long CONFERENCE_LISTEN = 2L
	public static long CONFERENCE_AUTOLISTEN = 3L
	public static long CONFERENCE_AUTOLISTEN_SLEEP = 4L
	 Session
	public static long INCOMING = 0L
	public static long MODE_HOST = 1L
	public static long MODE_LISTENER = 3L
	public static long MODE_PARTICIPANT = 2L
	public static long MODE_UNDEFINED = 0L
	public static long OUTGOING = 1L
	public static long OPERATOR_STATUS_IDLE = 0L
	public static long OPERATOR_STATUS_WAIT = 1L
	public static long OPERATOR_STATUS_TALK = 2L
	public static long QA_STATUS_ACTIVE = 2L
	public static long QA_STATUS_IDLE = 0L
	public static long QA_STATUS_RISEDHAND = 1L
	public static long STATUS_CLOSED = 3L
	public static long STATUS_CONFERENCE = 2L
	public static long STATUS_DIALING = 4L
	public static long STATUS_IVR = 1L
	 SessionDR
	public static long INITIATOR_BRIDGE = 2L
	public static long INITIATOR_UNDEFINED = 0L
	public static long INITIATOR_USER = 1L
	 Attribute
	public static long TYPE_DTMF = 3L
	public static long TYPE_INT = 2L
	public static long TYPE_STRING = 0L
	 Appendix A: Support Resources
	Support Documentation
	Web Support
	Telephone Support
	Email Support

