

Real Time Interface –
Programmer’s Guide

(version 2.2)

 Real Time Interface
 Programmer’s Guide
2

Disclaimer
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN
THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL
ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL
RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE
ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET
THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY
THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR WYDE VOICE REPRESENTATIVE
FOR A COPY.

IN NO EVENT SHALL WYDE VOICE OR ITS SUPPLIERS BE LIABLE FOR ANY
INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES,
INCLUDING, WITHOUT LIMITATION LOST PROFITS OR LOSS OR DAMAGE TO
DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN
IF WYDE OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Copyright
Except where expressly stated otherwise, the Product is protected by copyright and other
laws respecting proprietary rights. Unauthorized reproduction, transfer, and or use can be a
criminal, as well as civil, offense under the applicable law.

WYDE Voice and the WYDE Voice logo are registered trademarks of WYDE Voice LLC
in the United States of America and other jurisdictions. Unless otherwise provided in this
Documentation, marks identified with “R” / ®, “TM” / ™ and “SM” are registered marks;
trademarks are the property of their respective owners.

For the most current versions of documentation, go to the WYDE support Web site:
http://docs.wydevoice.com/

November 25, 2010

http://docs.wydevoice.com/

 Real Time Interface
 Programmer’s Guide
3

Symbols and Notations in this Manual

The following notations and symbols can be found in this manual.

Denotes any item that requires special attention or care. Damage to the
equipment or the operator may result from failure to take note of the noted
instructions

Figure Denotes any illustration

Table Denotes any table

Text Denotes any text output

Folder/File Denotes any folders (paths) or files names

commands Denotes any callback handlers, DTMF commands, attributes and
parameters

 Real Time Interface
 Programmer’s Guide
4

Table of Contents
Symbols and Notations in this Manual... 3
Table of Contents ... 4

Figures List ... 6
Chapter 1: Introduction... 7

Assumed Skills ... 7
Basic Concepts ... 7

Real Time Interface .. 7
Session Initiation Protocol (SIP) .. 8
Real-time Transport Protocol (RTP) .. 9
Active Speaker Daemon (ASD) ... 9

Definitions, Acronyms and Abbreviations ... 10
Chapter 2: RT Interface Transports Protocols.. 13

SIP Transport.. 13
Control Protocol Format... 13
Keep-Alive Mechanism.. 14
Joining a Conference .. 15
Join Response ... 16
Leaving a Conference... 17
Keep-Alive Format ... 17
Active Speaker Notifications in Real Time Protocol ... 17

ASD Transport.. 18
Configuration.. 18
Authorization.. 19
Calls to Conferences... 19
Active Speaker Notifications in ASD... 20
Real Time Commands Requests in ASD.. 21

Bundling Connections Using Audio Keys ... 22
Chapter 3: Message Format Reference... 24

Request Format... 25
ASSOCIATE (Request to Change Audio Key of the Connection) 25
CONF-DROP (Request to Drop the Conference) .. 25
DROP (Request to Drop the Connection) .. 25
HOLD (Request to Change Hold Status of the Connection).. 26
HOLD-GROUP (Request to Change Group Hold Policy)... 26
MUTE (Request to Mute the Connection) ... 26
MUTE-GROUP (Request to Change Group Mute Policy) .. 26
MUTE-SELF (Request to Self-Mute the Connection) ... 27
OPERATOR_CALL_MOVE (Request to Move the Current User to other Conference)
.. 27
OPERATOR_DIALOUT (Request to Dialout from Operator Conference) 28
OPERATOR_LISTEN (Operator Request to Listen the Conference) 28
OPERATOR_REJECT (Operator Request to Reject the User from the Queue) 28
OPERATOR_SCAN (Operator Request to Scan Conferences)................................... 29
OPERATOR_TALK (Operator Request to Talk to the User)...................................... 29

 Real Time Interface
 Programmer’s Guide
5

PLAY-FILE (Request to Control the Audio File Playback) .. 29
QA-CLEAR-QUEUE (Request to Clear Q&A Queue) ... 30
QA-MODE (Request to Start/Stop Q&A Mode) ... 30
QA-MUTE (Request to Mute/Unmute the Current Questioner) 31
QA-REQUEST (Request to Speak in Q&A Sessions)... 31
QA-TALK (Request to Allow/Disallow Speaking) ... 31
QA-TALK-NEXT (Request to Move to the Next Questioner) 31
RECORDING (Request to Start/Stop the Conference Recording) 32
SECURE (Request to Secure/Unsecure the Conference)... 32
SET-CUSTOMNAME (Request to Change Custom Name of the Call)...................... 32
SET-GAIN (Request to Change Volume Level of the Call) .. 32
SET-JOBCODE (Request to Change Conference Job Code) 33
SET-ROLE (Request to Change Role of the Connection) ... 33
START-BROADCAST (Start Broadcast).. 33

Response Format .. 34
Notification Format .. 35

NOTIFY-ASSOCIATE .. 35
NOTIFY-CONFERENCE.. 36
NOTIFY-DROP ... 36
NOTIFY-GROUP... 36
NOTIFY-HOLD ... 37
NOTIFY-JOIN ... 37
NOTIFY-LOCK ... 38
NOTIFY-MUTE... 38
NOTIFY-OPERATOR-CONNECT... 39
NOTIFY-OPERATOR-QUEUE .. 39
NOTIFY-OPERATOR-SCAN ... 40
NOTIFY-OPERATOR-SCAN-ACTIVE ... 40
NOTIFY-OPERATOR-STATUS... 40
NOTIFY-OPERATOR-TALK ... 41
NOTIFY-QA_MODE... 41
NOTIFY-QA_STATUS ... 41
NOTIFY-RECORDING... 42
NOTIFY-SET_CUSTOMNAME... 42
NOTIFY-SET_GAIN ... 42
NOTIFY-SET-ROLE ... 42
NOTIFY-TERMINATION .. 43

Appendix A: Support Resources .. 44
Support Documentation.. 44
Web Support ... 44
Telephone Support.. 44
Email Support ... 44

 Real Time Interface
 Programmer’s Guide
6

Figures List
Figure 1: Real Time Interface Transports... 13
Figure 2: SIP Messages Exchange ... 14
Figure 3: ASD Authorization ... 19
Figure 4: ASD Call to the Conference ... 20
Figure 5: Muting the Specific Call in ASD .. 21

 Real Time Interface
 Programmer’s Guide
7

Chapter 1: Introduction
WYDE conferencing bridges (like SB 1000) provide different API that allow manage
conferences and calls, configure subscribers and their conference account, maintain DNIS
and call flow management. The basic APIs are
x real time (RT) interface,
x web services API,
x different adapters, for instance

o billing adapter that allow writing calls and conferences information to an
external database,

o authentication adapter that allow user authentication based on external
database), etc.

This document is programmer’s guide for the real time interface only. Other APIs are being
described in the separate documentation (for instance, web services API is being described
in “Web Service API – Programmer’s Guide”, etc.).

Assumed Skills
This call flow development programmer’s guide assumes you have a working knowledge of
the following technologies and skills:
x PC usage
x System administration
x Programming basics (in some kind of programming languages)
x Session Initiation Protocol (SIP) basics
x VOIP basics
x TCP/IP networking
x Web Administration Interface – User Guide

Basic Concepts

Real Time Interface
The real time interface in communications between the server and the client performs
PUSH notification, i.e. it sends/receives the messages once any of events occurred on the
bridge. Comparing RT interface with the web services API, they perform PULL
notifications, i.e. the requests are being sent to server using web methods and the client
receives responses only on the requests that were sent.

The real time interface can be implemented using two approaches:
x RT interface makes SIP call to the bridge using special client – it performs SIP call to

send, receives commands, and exchanges information about the conferences – it is
possible to exchange text messages (Info) inside of SIP call;

x RT interface makes the same via another transport protocol – Active Speaker Daemon
(ASD) proxy server, the specific service implement and installed as the part of WYDE
bridge software.

 Real Time Interface
 Programmer’s Guide
8

Session Initiation Protocol (SIP)
The Session Initiation Protocol (SIP) is a signaling protocol, widely used for controlling
multimedia communication sessions such as voice and video calls over Internet Protocol
(IP). The protocol can be used for creating, modifying and terminating two-party (unicast)
or multiparty (multicast) sessions consisting of one or several media streams. The
modification can involve changing addresses or ports, inviting more participants, adding or
deleting media streams, etc. Other feasible application examples include video
conferencing, streaming multimedia distribution, instant messaging, presence information
and online games.

The SIP protocol is a TCP/IP-based Application Layer protocol. SIP is designed to be
independent of the underlying transport layer; it can run on Transmission Control Protocol
(TCP), User Datagram Protocol (UDP), or Stream Control Transmission Protocol (SCTP).
It is a text-based protocol, incorporating many elements of the Hypertext Transfer Protocol
(HTTP) and the Simple Mail Transfer Protocol (SMTP), allowing for direct inspection by
administrators.

SIP is a text-based protocol with syntax similar to that of HTTP. There are two different
types of SIP messages: requests and responses. The first line of a request has a method,
defining the nature of the request, and a Request-URI, indicating where the request should
be sent. The first line of a response has a response code.

The following methods (types) are defined for SIP requests:
x INVITE: Used to establish a media session between user agents; invites users to

communication session; usually contains SDP description of the session.
x MESSAGE: Used to transfer instant messages in SIP (instant messaging).
x ACK: Confirms reliable message exchanges (confirms INVITE response receiving).
x BYE: Terminates a session between two users in a conference; can be transferred by

any participant of the sessions.
x REGISTER: Used by a UA to notify its current IP address and the URLs for which it

would like to receive calls.
x CANCEL: Terminates a pending request (does not affect on completed requests).
x OPTIONS: Requests information about the capabilities of a caller, without setting up a

call.
x INFO: Used to transfer the information which does not change communication session

state.
x PRACK: Used for temporary acknowledgments.
x SUBSCRIBE: Subscription to receive acknowledgments about the events.
x NOTIFY: Notification about the events for subscriber.
x PUBLISH: Events publishing on server.
x REFER: Receiver request to transfer SIP request.
x UPDATE: Modifies the state of the communication session without changes in the

dialog state.
The WYDE bridge software real time interface uses the following SIP requests only:
INVITE (to join the conference, special attributes are being added to SIP INVITE for

 Real Time Interface
 Programmer’s Guide
9

configuration purposes), MESSAGE (as transport), ACK (to receive
notifications/acknowledgments, real time commands are being transferred only after ACK
received), and BYE (to leave the conference).

The SIP response types fall in one of the following categories:
x Provisional (1xx): Request received and being processed.
x Success (2xx): The action was successfully received, understood, and accepted.
x Redirection (3xx): Further action needs to be taken (typically by sender) to complete

the request.
x Client Error (4xx): The request contains bad syntax or cannot be fulfilled at the server.
x Server Error (5xx): The server failed to fulfill an apparently valid request.
x Global Failure (6xx): The request cannot be fulfilled at any server.

The detail information about SIP can be read in the following articles:
x SIP: Session Initiation Protocol – http://tools.ietf.org/html/rfc3261
x The Stream Control Transmission Protocol (SCTP) as a Transport for the Session

Initiation Protocol (SIP) – http://tools.ietf.org/html/rfc4168
x Session Initiation Protocol for Telephones (SIP-T): Context and Architectures –

http://www.ietf.org/rfc/rfc3372.txt
x Session Initiation Protocol Core – http://www.ietf.org/dyn/wg/charter/sipcore-

charter.html

Real-time Transport Protocol (RTP)
The Real-time Transport Protocol (RTP) defines a standardized packet format for
delivering audio and video over the Internet. RTP is used extensively in communication
and entertainment systems that involve streaming media, such as telephony, video
teleconference applications and web-based push to talk features. For these it carries media
streams controlled by H.323, MGCP, Megaco, SCCP, or Session Initiation Protocol (SIP)
signaling protocols, making it one of the technical foundations of the Voice over IP
industry.

RTP is usually used in conjunction with the RTP Control Protocol (RTCP). While RTP
carries the media streams (e.g., audio and video) or out-of-band events signaling (DTMF in
separate payload type), RTCP is used to monitor transmission statistics and quality of
service (QoS) information. When both protocols are used in conjunction, RTP is usually
originated and received on even port numbers, whereas RTCP uses the next higher odd port
number.

The detail information about RTP can be read in the following article:
x RTP: A Transport Protocol for Real-Time Applications –

http://tools.ietf.org/html/rfc3550

Active Speaker Daemon (ASD)
Active Speaker Daemon (ASD) proxy server is the specific service that acts as an
intermediary between the client machine with TCP/IP communications and the WYDE
server with SIP communications. From one side it receives TCP/IP messages from the

http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc4168
http://www.ietf.org/rfc/rfc3372.txt
http://www.ietf.org/dyn/wg/charter/sipcore-charter.html
http://www.ietf.org/dyn/wg/charter/sipcore-charter.html
http://tools.ietf.org/html/rfc3550

 Real Time Interface
 Programmer’s Guide
10

client, transforms them into SIP protocol, makes SIP call to the server, and sends client’s
messages to the server using SIP protocol; from another side it converts SIP messages of
the server into TCP/IP protocol and sends TCP/IP messages to the client.

The commands, requests, responses and notifications are the same in SIP and in ASD.
Using ASD it is possible to use usual telecommunication software (like telnet) to exchange
(send/receive) the messages between server and client.

Definitions, Acronyms and Abbreviations
In order to discuss the WYDE Real Time Interface development effectively, we need to
have a common set of terminology. For this purpose, we should definite the dictionary for
the terms you will see throughout this programmer’s guide:
x VoIP – Voice over Internet Protocol, a term that refers to the capture/playback of audio

streams and their transmission over IP based networks.
x End Point (EP) – A generic term used to denote the application running on end-user

machines in a VoIP.
x Public Switched Telephone Network (PSTN) – the traditional phone system.
x Bridge – A server that hosts voice conferences. Participants can use PSTN or VoIP

connections to connect to the bridge. It is responsible for mixing the signals and
sending the result back to the participants.

x Gateway – A gateway server between PSTN and VoIP, i.e. a server that terminates end
point connections and routes VoIP data between an end point and the bridge.

x Conference User – A user in a conference. Each connection to the conference bridge is
associated with exactly one conference user. An end point can be associated with any
number of conference users. A conference user may or may not be associated with an
end point. The conference user can have one of the roles: host, participant or listener.

x Conference – An audio meeting hosted on a bridge and consisting of PSTN and/or
VoIP participants. A data structure is used to describe ongoing conference on the
bridge. Objects of this type are only created by server. User may fetch these objects by
calling appropriate function. When conference is over the conference object is deleted
by the server.

x Conference Number – A unique external conference number. Conference number is
the property of conference account. If the conference accounts have the same
conference number all these accounts determine one single conference. For instance the
user can create one conference account record that determine host role, another
conference account record that determine participant role, and another conference
account record that determine listener role – all these records should have the same
conference number to determine one unique conference.

x Conference ID – A unique conference ID that represents the instance of a conference.
When any conference is being started it receives unique conference ID, and all calls to
this conference have the same conference ID; if this conference has been completed and
another conference is being started that conference will receive another conference ID.
Conference ID is normally not exposed to users, unless on the reports.

x Session – A data structure represents a single ongoing call on the server. User can not
directly create this object. When the call is over server automatically deletes this object.
Normally this data structure is used to get information about call attributes like

 Real Time Interface
 Programmer’s Guide
11

calling/called number etc., or do something with the call, for instance mute, hang, hold
etc.

x Session ID – The unique identifier generated by the bridge for each session
(connection, VoIP as well as PSTN) established between a conference user and the
bridge. The session id is unique within a given conference.

x Audio Key – A key sequence that is used to group different calls from the same
conference in a bundle to manage these calls using real-time or another external
interface. Audio key is short identifier generated externally and provided to the bridge
at the time of joining a conference. Audio key is being generated by real-time
application, for instance Moderator-Console, the user can enter the same audio key on
his DTMF keypad, usually as #audio key#, these calls (the call from real-time
application and the user call to the conference) are being grouped together and the real-
time application can manage this user call (the call with the same audio key), for
instance mute the call, etc.

x Subscriber – A real person, he has a name, phone number, e-mail address, etc. The
subscriber can have conference accounts, he does not have access codes, but access
codes are properties of conference accounts that have subscribers. Note that non-admin
(non-operator) subscribers can see only “own” information, i.e. his information and
information that belongs to subscribers created by him, he can see only their calls,
conferences, the reports will show only their data, etc.

x PIN – The login ID for the subscriber (must be unique). It can be used either as login in
Web Administration Interface (in this case it can be either number or alpha-numeric) or
as login for some call flows (in this case must be numeric) for participants
authorization.

x Conference Account – The element of subscriber conferences configuration.
Conference accounts always belong to subscriber. It is being used to define a person in
a conference with a particular role (e.g. host, participant, listener, etc.), the DNIS
number that should be used to call to the conference, and the access code that should be
entered by the user that called to the conference DNIS to determine his role. A
subscriber could be a host user in one conference and a listener in another. Conference
accounts with the same conference number represent single conference setup.

x DNIS – A unique set of numbers that is outpulsed by a phone carrier that indicates the
intended destination for a particular call. It can be any length digits (although usually 10
digits). DNIS is the property of the conference account, but different DNIS numbers
can be used to connect to the same conference.

x Access Code – A numeric code unique for DNIS that allows a host or participant or
listener access to a conference call. When users call to DNIS number they being asked
to enter their access code. The access code determines the conference and the user role
in the conference. Different access codes can determine the same conference, for
instance one access code can determine the connected user has host role, another access
code can determine that connected user has participant role, and another access code
can determine that connected user has listener role.

x Host – A user in the conference call that can make changes to the system while the
conference call is in progress. Like change the security setting, change who can talk or
answer, etc. Sometimes the host user is called moderator. This user role is defined in
conference account. This is the most privileged role in a conference. By default,

 Real Time Interface
 Programmer’s Guide
12

connections in this role can send and receive RTP data (i.e. the corresponding
participant is allowed to speak and listen). They also are allowed to execute control
actions on all connections and roles.

x Participant – A person in the conference who can actively participate in a call by both
talking and listening. This user role is defined in conference account. Connections in
this role must be allowed to send and receive RTP data by default. They can execute
mute and un-mute commands on their own connections (associated with the same audio
key); but not on other connections. They are allowed to drop connections within the
same bundle (except where the audio key = 0).

x Listener – A person in the conference who can hear the conference call, but cannot
speak. Their audio path is one way only (receive). This user role is defined in
conference account. Connections in this role must not have the privilege to speak. They
are allowed to send RTP packets to provide feedback for bandwidth adaptively on the
stream sent by the bridge. They are allowed to drop connections that are within the
same bundle (except where the audio key = 0). Note: users in listener role can be un-
muted to enable them to talk; however, the listener group as a whole will never be un-
muted.

x Call Flow – A unique conference service setup, the logic that is used to process the
conference calls. This is the process a call goes through from call setup to, to
processing, to call tear down. It includes the logic, DTMF key-presses used, functions,
and the recorded prompts. There are two basic call flow categories: call flows without
authentication and call flows with authentication.

x Attribute – In terms of WYDE API, a data structure is used to carry attributes for call
flow, DNIS and conference account (user). The attributes skeleton is defined by call
flow; other attributes can only override some of them, so for instance when a user called
in to the conference DNIS it gets attributes exposed by the call flow, but some of these
attributes can be already altered by the DNIS. Each attribute has name, type, value, and
role.

 Real Time Interface
 Programmer’s Guide
13

Chapter 2: RT Interface Transports Protocols
In this section we will explain different transport protocols that can be used in real time
communications between WYDE bridge and clients software. These transports are SIP
transport and ASD (TCP/IP) transport.

Real time protocol is the same for both transports (SIP and ASD). The bridge supports
receiving requests and sending responses / notifications on SIP using MESSAGE; the
content-type of these messages is “text/plain”. But all requests, responses, and
notifications are the same for both transports – they are described in Chapter 3: Message
Format Reference of this guide.

Figure 1: Real Time Interface Transports

SIP Transport

Control Protocol Format
The following figure represents a possible sequence of control messages exchanged
between the gateway and the bridge.

 Real Time Interface
 Programmer’s Guide
14

Gateway

t
i
m
e

Bridge

 Leaving the conference

Control request

Control response

SIP BYE Message to leave the conference

SIP 200 OK with SDP

SIP INVITE request with SDP
…

Join Notifications
…
…

SIP 202 Accepted

Keep-Alive request

 Joining the conference

Exchange control
messages; Keep-Alive
messages when needed

…

Figure 2: SIP Messages Exchange

Note: SIP Level Acks and other 200 OKs received and sent are not shown for all the
messages.

Keep-Alive Mechanism
A connection is considered to be alive based on the activity on its SIP Connection. No
assumption is made based on the status of the RTP connection. Keep-Alive messages are
periodically sent from the gateway if no control requests need to be sent to the bridge.
x If no Control Request or Keep-Alive has been received for 120 seconds, the bridge

marks the connection dead and cleanup the state for the connection.
x The bridge sends a response (SIP Level 202 Accepted or similar) if the connection is

alive at its end. A SIP error is returned if the bridge has cleaned up the connection.
x If the bridge has failed to receive a Keep-Alive or failed to send a control message

(response or notification) for 120 seconds, the connection is being marked dead and
cleaned up.

 Real Time Interface
 Programmer’s Guide
15

Joining a Conference
The gateway or client's SIP phone sends a SIP INVITE message to join a conference. The
SIP INVITE has the following format:

...
SIP To:
SIP From:
...
SIP Requires:
…
v=...
o=...
a=sendrecv
m=...
...

SIP Header

SIP SDP

In this request SIP Header To should have the following format:
To:<sip:dnisNumber[_accessCode_[_role]]@ipAddress>
where

ipAddress – IP address of the bridge;
dnisNumber – DNIS number of the conference;
accessCode – the access code for the conference;
role – the role in the conference, can take on of the values:

Moderator|Speaker|Listener
Parameters accessCode and role are optional.
If accessCode exists in SIP Header To – the bridge activates fastJoin function
(conference fast entry); in this case on call entry the call flow executes
fastjoin_handler instead of entry_handler (see “Call Flow Development –
Programmer’s Guide” for detail information).

SIP Header From should have the following format:
From:<sip:callerNumber@ipAddres>

By default the RT protocol and Active Speaker Notifications are switched off.
To switch on the RT protocol for the specific call, SIP INVITE should contain SIP Header
Require in the following:
Require: version,VoIP[,RT][,NoPrompt]
where

version – indicates the version of the control protocol being used. The version
specification in this header helps to make changes to the control protocol while
maintaining backwards compatibility with previous versions of the protocol/end point.

 Real Time Interface
 Programmer’s Guide
16

VoIP – token is used to indicate that this SIP connection is actually associated with a
VoIP based end point. PSTN calls forwarded by the SIP gateway will not have this
token.
RT – indicates that real time notifications must be sent on this connection. If the
Require header does not have the RT token, notifications must not be sent.
NoPrompt – indicates that the IVR prompts should not be played on the connection at
the time of join and the participant must be placed in the conference directly. The
NoPrompt token will is being used for cases where the user reconnects to the bridge –
in this case, playing prompts again would not lead to a good user experience.

To switch on the Active Speaker notifications the SDP (Session Description Protocol)
request should contain the following attribute:
a=x-ActiveSpeaker: on|off

This attribute on value indicates if Active Speaker updates should be sent on RTP. This
attribute off value indicates that no such updates are required.

The media attribute (m= line in SDP) indicates the type of media transport, type and the
format list. If the connection exchanges audio stream, then it will use the m=audio line
according the standard specification. For inactive connections, the line will read:
“m=application <source port> udp as” which indicates that the content
exchanged uses a specific application format: as (active speaker updates in RTP headers)
using UDP as the underlying transport.

Join Response
The bridge responds to the SIP INVITE with provisional responses such as 100, 180 and
then provides a final 200 OK response with the answer SDP.

The typical answer SDP has the following fields:

v=0
o=root 11406 11406 IN IP4 <[IP Address>
s=session
i=connectionId:1122
c=IN IP4 <IP Address>
t=0 0
m=audio <Source RTP Port> RTP/AVP 0 101
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-16
a=silenceSupp:off - - - -

In addition to the standard fields in the answer SDP, the bridge supports a custom
information field that specifies the connection identifier that was assigned to the
connection.
The format for the information field is:

i=connectionId:[connection id]
Example:

 Real Time Interface
 Programmer’s Guide
17

i=connectionId:1122
Sending the session attribute “a=sendrecv|recvonly|sendonly|inactive” in a
join response is optional.
For an inactive connection with “m=application” media line, the bridge sends an
“m=application” media line in the response.

Leaving a Conference
The gateway sends a “SIP BYE” to leave a conference. The bridge sends a “200 OK” to
the BYE.

Keep-Alive Format
The gateway sends a SIP control message with the keyword “KEEP-ALIVE Seq#” to
indicate a keep-alive request.
A SIP level 202 Accepted is expected as a response to the KEEP-ALIVE.

Active Speaker Notifications in Real Time Protocol
The streaming protocol provides active speaker notification in real time.
x The bridge supports sending Active Speaker Updates via RTP using the CSRC fields.

The CC field of the RTP header indicates the total number of speakers listed in the
header. You can read detail information about these field in RTP documentation.

x The bridge uses ConnectionIds in CSRC fields.
x The bridge reserves the least significant 4 bits of the CSRC field to indicate speaker

loudness and use the most significant 28 bits to specify the ConnectionId.
x The bridge sends Active Speaker Updates whenever there is a change to the current

speaker list. The update specifies the list of currently active speakers. This update is
being sent instantaneously (within 10ms of the change).
o When all speakers are silent, the CC field is being set to 1 and a CSRC value of -1

should be used to positively indicate silence.
x In addition, the bridge sends Active Speaker Updates every 5 seconds even if there is no

change in order to let the receiver recover from the loss of an earlier update.

To turn on Active Speaker notifications SIP INVITE message SDP (Session Description
Protocol) fields should contain the following attribute:

Active Speaker Update attribute: a=x-ActiveSpeaker: on|off
This attribute when set on indicates that Active Speaker updates should be sent on RTP.
This attribute when set off indicates that no such updates are required.

 Real Time Interface
 Programmer’s Guide
18

ASD Transport
When Active Speaker Daemon (ASD) server starts for incoming connections it opens TCP
port specified in the configuration file. In addition ASD has its own communication
protocol for TCP connections. ASD receives TCP connections, makes authorization, and
sends to the bridge the information to what conference it is necessary to be connected. ASD
is trying to make control calls to this conference, and sends all messages back to TCP
client.

In this approach the client application should not use SIP and implement SIP call to the
server. ASD is responsible for all of this; it is performing SIP call to the server and proxies
all messages in TCP/IP.

Configuration
On the bridge ASD is being configured in /usr/local/DNCA/etc/asd.cfg file. The possible
ASD configuration file could be the following:
asd.cfg
log-filename = /usr/local/DNCA/log/asd.log
log-level = event

daemon = 1

local-ip = 192.168.1.5
sip-server = 192.168.1.5
sip-port = 5150
tcp-port = 5142
rtpmin = 5142
rtpmax = 15144

dc-address = 0.0.0.0:4480

console-address = 127.0.0.1:5140

The following paramters can be changed in this asd.cfg configuration file:
x local-ip – the IP address of the computer where ASD service is running;
x sip-server – the IP address of your bridge, i.e. the computer where the WYDE

bridge software core components were installed;
x sip-port – ASD port for SIP messages exchange;
x tcp-port – the port for ASD connections, i.e. the port where ASD is listening the

incoming connections;
x rtpmin – the minimum allowed RTP port;
x rtpmax – the maximum allowed RTP port.

You should update local-ip and sip-server entries of this file and set your server IP
address here. If you wish you can update other configuration parameters in this file as well.
After any this file changes you should execute the command:

 Real Time Interface
 Programmer’s Guide
19

service asd restart

To manage the conferences and calls via ASD the client application must connect to the
server via the port specified in configuration file (default 5142). If you would like to use
telnet program for testing you can run:
telnet <your server IP> <your tcp port>
for this purpose, where
x <your server IP> – parameter local-ip from asd.cfg;
x <your tcp port> – parameter tcp-port from asd.cfg.

Authorization
After you have connected to your ASD server you should authorize your connection. To do
that you should run the command:
LOGIN
(without parameters). As the response you will receive:
NONCE <key>
(for instance, NONCE W:]F&Th{e}R98cdy*o{%4A}#dZQXz9).

The received key should be encoded and to the server should be sent the command:
LOGIN <encoded key>
(for instance, LOGIN gATKx4S*C9bRnYmj&QoS@]ReKc<fcW).

If the login was successful you will receive the message:
LOGIN OK

If the login was unsuccessful you will receive the message:
LOGIN FAIL

The ASD authorization process is shown on Figure 3.

Figure 3: ASD Authorization

Please contact WYDE Voice Support Team if you need algorithm how the
received key could be encoded.

Calls to Conferences
To make the call to specific conference you should use the following command:
CONFERENCE <DNIS number> <access code>
[<role: host|participant>] [<custom name>]

 Real Time Interface
 Programmer’s Guide
20

x <DNIS number> – the parameter denotes DNIS (phone) number to call;
x <access code> – the parameter denotes the actual access code that should be used

to connect to the conference;
x <role: host|participant> – the optional parameter denotes the role that

should be granted to the call in the conference;
x <custom name> – the optional parameter denotes the custom name that should be

assigned to the call in the conference.

For instance you can run
CONFERENCE 8665089020 1111
to call to DNIS number 8665089020 and use access code 1111.

If you successfully connected to the conference you will receive the message:
SELF-ID <sessionId>
(for instance, SELF-ID 16777292); 16777292 is the session identifier of the call.

If connection to the conference has been successful all SIP messages will be sent to the
client until the conference or the call is over. I.e. you will get all notification messages (see
section: Notification Format), including active speaker notifications (see section: Active
Speaker Notifications in Real Time Protocol and section: Active Speaker Notifications in
ASD).

ASD call to the conference and initial notifications are shown on Figure 4.

Figure 4: ASD Call to the Conference

If the connection to the conference is unsuccessful, you will receive the message:
DROPPED
and the connection will be closed by foreign host.

Active Speaker Notifications in ASD
ASD receives active speaker notifications of the connected conference in RTP stream and
these notifications are being transformed into notifications in the following format:
AS <sessionId1> <level1> [, <sessionId2> <level2> [,
<sessionId3> <level3>[, <sessionId4> <level4>]]]

 Real Time Interface
 Programmer’s Guide
21

x <sessionId1> ... <sessionId4> – the tokens indicate the sessionId of the
connections;

x <level1> ... <level4> – the tokens indicate the sound volume level, they
could be 0 (silence) or from 1 (quietest) till 15 (loudest).

Note:
if sound level in the conference is 0 (silence) the first token will be equal to 268435455, i.e.
the returned notification will be:
AS 268435455 0
Otherwise the notification will contain non-silent sessions’ identifiers and their sound
levels from 1 till 15 (for four loudest sessions as maximum) for the connected conference.

Real Time Commands Requests in ASD
Using ASD you can execute any of the real time bridge request commands. To do so you
should run:
RT <RT request command>

x <RT request command> – the parameter denotes any of WYDE bridge request

command described in section: Request Format.

After you send the request you will receive the response message that contains the identifier
of your request and the response code (error code) as described in section: Response
Format.

When the requested command is executed you will receive the notifications message, see
section: Notification Format for details.

For instance, if you would like to mute the specific session you can run the command:
RT MUTE 1 strict 16777293
where 1 – your request identifier, 16777293 – the session identifier you would like to
mute.

As the response you will receive:
RESPONSE 1 0
where 1 – your request identifier, 0 – the response code indicating success.

When your request is implemented you will receive the notification message:
NOTIFY-MUTE False Strict False TRUE 16777293
where 16777293 – the session identifier you are muting.

You can see how to mute the specific call in ASD on Figure 5.

Figure 5: Muting the Specific Call in ASD

 Real Time Interface
 Programmer’s Guide
22

Bundling Connections Using Audio Keys
Audio Key – is short identifier generated externally and provided to the WYDE bridge at
the time of joining a conference.
x The WYDE bridge is capable of associating each connection with an audio key, which

is a 32-bit unsigned integer, presented by participants at the time of joining the
conference; however, it is not mandatory for the audio key to be presented at join time –
the bridge is able to associate an audio key value of zero in cases where it is not
presented at join time.

x The WYDE bridge is able to group a set of connections that have the same audio key
into a single logical bundle; note: connections with zero audio key assigned by the
bridge are not form a logical bundle.

x The WYDE bridge allows the audio key associated with a connection (PSTN or VoIP)
to be changed.

The bundling connections are being used because a single end point may have multiple
connections to the bridge. For instance an end point can use a PSTN line to speak and listen
in the conference; but also it can use a separate connection to send and receive control data.
Thus there is a one-to-many mapping between a given audio key and individual connection
identifiers.

When the control call is being made on the bridge the audio key is being assigned to this
call by mf (multi-frontend) service. This audio key is unique within the conference. When
voice (PSTN) call is being made on the bridge the audio key is not assigned to this call, i.e.
its audio key is 0. For any connected calls the control call receives notification NOTIFY-
JOIN, this notification has the audio key token (see section: Notification Format for
details); for voice calls it equals to 0, for control calls it is non-zero numeric value unique
within the conference.

The audio key can be set (or changed) for the PSTN (voice) call using your telephone
DTMF keypad (default sequence is #9<audio key>#). The audio key also can be
changed for the control call using ASSOCIATE (Request to Change Audio Key of the
Connection), see section: Request Format. In both cases the control call receives
notification NOTIFY-ASSOCIATE, this notification has the audio key token (see section:
Notification Format for details).

Bundling connections is working the same way regardless of what transport is being used –
SIP transport or ASD transport. The logic and using approach is the same in both cases. If
ASD transport is used the ASD connection receives generated audio key (in NOTIFY-
JOIN) and it receives all other notifications whenever there is a change in the conference
state. If SIP transport is used to receive generated audio key and all notifications of the
conference the SIP INVITE must contain the following SIP Header Require:
Require: version,VoIP,RT
and the media attribute (m= line in SDP) must be the following:
m=application <source port> udp as
where <source port> – is the port where the client application receives RTP data.

 Real Time Interface
 Programmer’s Guide
23

As it already was told all calls with the same audio key are being joined into logical groups
– bundles. If the calls have the same audio keys one of the calls in the bundle can manage
another call in the same bundle. For instance if we have two calls with the same audio key:
the first – control call and the second – voice call, the control call can manage the voice call
which has the same audio key that the control call has.

Thus if you would like to group control and voice calls together the workflow should be the
following:
i) the control call is being made on the bridge and receives the audio key;
ii) the voice call is being made on the bridge, the audio key of this call is zero;
iii) the audio key of the control call should be told to the voice call owner;
iv) the caller of the voice call should enter the received audio key on his phone using

#9<audio key># keys sequence;
v) the control call receives notification with new audio key of the voice call that has been

changed.
After that these calls are grouped together into a single logical bundle and the voice call can
be managed by the control call.

Note that all these calls are different calls, they have their own session identifiers and they
are represented by different CDR records. However the client’s application can consider
them as the same calls and show grouped information as the single record if it is necessary.

 Real Time Interface
 Programmer’s Guide
24

Chapter 3: Message Format Reference
Control messages exchanged between the bridge and the gateway/user are of 3 types:
requests, responses, and notifications.
x The bridge supports receiving requests and sending responses / notifications on SIP

using MESSAGE; the content-type of these messages is “text/plain”.
x The control messages begin with a keyword which identifies the type of message. The

keyword is followed by a set of tokens. The keyword and tokens are delimited by one
or more white space characters (excluding newline).
Notifications can have multiple lines, with each line representing a single command or
notification. The lines are delimited by a ’\n’ character.

These control messages are the same regardless of transport (SIP or ASD) used; see
Chapter 2: RT Interface Transports Protocols for details.

When you would like to execute any command you should send the request message to the
bridge. Once the request is received by the bridge, the response message is being generated
and returned; the response message contains the identifier of your request and the response
code (error code). Requested commands are being executed asynchronously; when the
requested command or any other conference event is occurred the notification message will
be sent by the bridge back to you.

 Real Time Interface
 Programmer’s Guide
25

Request Format
Following is the format of all commands that an end point can execute on the bridge. Each
request is identified by a Keyword. All requests have a requestId (unique request identifier)
that must be returned by the bridge in the response. All requests identify the target of the
request either by the sessionId or by their role.

For any request commands text arguments that contain spaces should be either single
quoted using apostrophe (') or double quoted ("). If the text argument also contains the
same quotes that were used in the quotation they should be shielded (sheltered) using
backslash (i.e. \' or \"). This rule is being applied for such arguments as customName of
SET-CUSTOMNAME, jobCode of SET-JOBCODE, filename of PLAY-FILE, etc.

By default, all requests can be executed by the moderator. Participants can
send requests to their own connections and to the connections of the same
bundle (the same audio key) with them. Additional privilege information is
discussed with each request, as applicable.

ASSOCIATE (Request to Change Audio Key of the Connection)
Format:
ASSOCIATE <requestId> <sessionId> [<Audio-Key>]

Assign (associate) new audio key for the specific session. If <Audio-Key> parameter
omitted the audio key will be set to 0 – the call does not belong to any bundles.

Privilege:
Non-moderator roles can execute this request only on their own connection (but not on
other connections in the bundle).

You can associate the audio key for the voice call only if there is the control
call in the conference that already has the same audio key and the roles of
both calls (the control call and the voice call) are the same.

CONF-DROP (Request to Drop the Conference)
Format:
CONF-DROP <requestId>

Privilege:
The request is permitted for moderator roles only.

DROP (Request to Drop the Connection)
Format:
DROP <requestId> <sessionId>

 Real Time Interface
 Programmer’s Guide
26

Privilege:
This request can be executed by non-moderator roles against connections in their own
bundle. Bundles with Audio-Key=0 are excluded in these operations.

HOLD (Request to Change Hold Status of the Connection)
Format:
HOLD <requestId> <True|False> <sessionId>

True indicates that the connection must be placed on hold; False indicates that the
connection must be released from hold.

Privilege:
This request can be executed by non-moderator roles but only against connections in their
own bundle. Bundles with Audio-Key=0 are excluded in these operations.

HOLD-GROUP (Request to Change Group Hold Policy)
Format:
HOLD-GROUP <requestId> <True|False> <Moderator|Speaker|Listener>

True indicates that the role must be placed on hold; False indicates that the role must be
released from hold.

Privilege:
The request is permitted for moderator roles only.

MUTE (Request to Mute the Connection)
Format:
MUTE <requestId> <Strict|Relaxed|False> <sessionId>

Strict indicates that the connection must be placed in strict mute; Relaxed indicates
relaxed mute and False indicates that the connection must be unmuted.

Privilege:
This request can be only be executed by Moderators. If Moderators issue this against the
connection in their own bundle, it is not treated as MUTE-SELF.

MUTE-GROUP (Request to Change Group Mute Policy)
Format:
MUTE-GROUP <requestId> <Strict|Relaxed|False>

<Moderator|Speaker>

Strict indicates that the role must be placed in strict mute; Relaxed indicates relaxed
mute and False indicates that the role must be unmuted.

 Real Time Interface
 Programmer’s Guide
27

Privilege:
The request is permitted for moderator roles only.

Exception:
MUTE-GROUP for muting a group of moderators excludes all connections that belong to
the same bundle as the initiating moderator.

MUTE-GROUP <requestId> <False> <Listener> is not allowed (as this has the
potential of un-muting of 1000 listeners - making the conference unusable).

MUTE-SELF (Request to Self-Mute the Connection)
Format:
MUTE-SELF <requestId> <Strict|Relaxed|False> <sessionId>

Strict indicates that the connection must be placed in strict mute, Relaxed indicates
relaxed mute and False indicates that the connection must be unmuted.

Privilege:
This request can be executed by non-moderator roles but only against connections in their
own bundle. Moderators muting other connections must not use this request.

Note that, if a moderator issues a MUTE-SELF it will still not affect the Moderator mute
field.
This request additionally requires that no IVR (“muted” or “unmuted”) be played on its
execution.

OPERATOR_CALL_MOVE (Request to Move the Current User to other
Conference)
Format:
OPERATOR_CALL_MOVE <requestId> <newDIDNumber> <newAccessCode>

[<newRole: Host|Participant|Listener>]

The request moves the user that currently is talking to the operator to another conference:
newDIDNumber indicates new (i.e. target) conference DNIS (DID) number where the call
should be moved; newAccessCode indicates the access code that should be used to join
to new (i.e. target) conference; optional newRole indicates the role that will be granted to
the call when it joins to new conference (applicable only for call flows without
authorization, for example CONF call flow). The same action can be performed by the
operator conference hosts using default *5 on DTMF keypad of their phones.

Privilege:
The request is permitted for moderator control call only.

 Real Time Interface
 Programmer’s Guide
28

OPERATOR_DIALOUT (Request to Dialout from Operator Conference)
Format:
OPERATOR_DIALOUT <requestId> <peerNumber>

The request performs dialout from the operator conference:
peerNumber denotes the phone number you wish to dial. The same action can be
performed by the operator conference hosts using default *7 on DTMF keypad of their
phones.

Privilege:
The request is permitted for moderator control call only.

OPERATOR_LISTEN (Operator Request to Listen the Conference)
Format:
OPERATOR_LISTEN <requestId> {True <ConfNumber> Direct|Shunt

<MuteMode: True|False>}|False

The request starts and stops other conference listening from the operator conference: True
as the first parameter indicates that the listening should be started, False as the single
parameter indicates that the listening should be stopped; ConfNumber – the number of the
conference you wish to start listening (must be indicated if True option is specified);
Direct|Shunt – Direct denotes that the operator should be directly connected to the
requested conference (in this case only operator can hear the requested conference, the user
connected to the operator can not hear that conference), Shunt denotes that between
operator conference and requested conference is being made the shunt and both conferences
can hear each other (operator and the connected user both can hear the requested
conference); MuteMode – True denotes that the operator is muted, so he can only hear
the specified conference and he is unable to talk, False denotes that the operator is not
muted, so he can hear and talk in the specified conference. The same action can be
performed by the operator conference hosts using default *4 on DTMF keypad of their
phones, the operator also has the options to connect with current user (Shunt mode) and
without current user (Direct mode).

Privilege:
The request is permitted for moderator control call only.

OPERATOR_REJECT (Operator Request to Reject the User from the Queue)
Format:
OPERATOR_REJECT <requestId> <confNumber> <sesId>

The request rejects the user from the operator queue, i.e. the conversion with the user will
be refused and the user will be removed from the operator queue. The argument
<confNumber> denotes the number of the conference where the caller came from (0 for
IVR calls); the argument <sesId> denotes the caller session identifier.

 Real Time Interface
 Programmer’s Guide
29

Privilege:
The request is permitted for moderator control call only.

OPERATOR_SCAN (Operator Request to Scan Conferences)
Format:
OPERATOR_SCAN <requestId> True|False

The request starts and stops conferences monitoring (surveillance call), i.e. the operator will
switch between the conferences and hear each conference 30 seconds: True denotes that
the monitoring should be started; False denotes that the monitoring should be stopped.
The same action can be performed by the operator conference hosts using default *1 on
DTMF keypad of their phones.

Privilege:
The request is permitted for moderator control call only.

OPERATOR_TALK (Operator Request to Talk to the User)
Format:
OPERATOR_TALK <requestId> {True [<confNumber> <sesId>]}|False

The request starts and stops talking to the user either from the operator queue or from the
user conference, even if the user did not request operator assistance.
x True denotes that the talking should be started:

o if <confNumber> <sesId> arguments are omitted the first caller from the
operator queue will be taken;

o if the arguments <confNumber> <sesId> are specified the specific caller
either from the operator queue or from the user conference will be taken
(<confNumber> – the conference number where the caller that should be taken
came from (0 for IVR calls), <sesId> – the caller session identifier);
9 to implement this request first the system looks into operator’s queue trying to

find out the user with <confNumber> <sesId> specified, if such user not
found in the queue next the system searches such user with <sesId>
specified in the active conference with the number <confNumber>;

x False denotes that the talking should be stopped.
To connect to the next user, i.e. receive the call from the user from the operator queue, the
operator conference hosts can use DTMF keypad of their phones and press default *2 to
start talking; *3 can be used to stop talking to user.

Privilege:
The request is permitted for moderator control call only.

PLAY-FILE (Request to Control the Audio File Playback)
Format:
PLAY-FILE <requestId> <command> [<arguments>]

 Real Time Interface
 Programmer’s Guide
30

Performs the management (control) of the audio file playback in the conference.
Commands and arguments:
x assign <dir> <filename> – assign the file for the playback:

o <dir> – either record for the conference recorded files (i.e. previous this
conference recordings) or upload for the uploaded files (i.e. the files uploaded
via web);

o <filename> – the audio file name without extension, this file should be in the
conference recording folder (usually /usr/local/DNCA/var/recordings/ folder)
subfolder, either record subfolder or upload subfolder for the specific conference;
if filename contains spaces use single or double quotes to define this argument
as described in the beginning of this section;

x seek <offset> <whence> – seek the audio file playback indicator (pointer) on
offset seconds relative to the parameter whence:
o 0 – starting from the beginning of the file;
o 1 – starting from the current position in the file;
o 2 – starting from the end of the file;

x start – start the playback from the current position;
x stop – stop the playback.

Privilege:
The request is permitted for moderator control call only.

QA-CLEAR-QUEUE (Request to Clear Q&A Queue)
Format:
QA-CLEAR-QUEUE <requestId>

Clears Q&A questions queue for the active Q&A session. It is similar to default *05
pressed on the DTMF keypad.

Privilege:
The request is permitted for moderator roles only.

QA-MODE (Request to Start/Stop Q&A Mode)
Format:
QA-MODE <requestId> <True|False>

Starts and stops Q&A mode for the conference. It is similar to default *01/*03 pressed on
the DTMF keypad: True indicates that the Q&A mode should be started; False indicates
that the Q&A mode should be stopped.

Privilege:
The request is permitted for moderator roles only.

 Real Time Interface
 Programmer’s Guide
31

QA-MUTE (Request to Mute/Unmute the Current Questioner)
Format:
QA-MUTE <requestId> <True|False>

Mutes (last parameter: True) or un-mutes (last parameter: False) the current questioner
in Q&A session. It is similar to default *04 pressed on the DTMF keypad.

Privilege:
The request is permitted for moderator roles only.

QA-REQUEST (Request to Speak in Q&A Sessions)
Format:
QA-REQUEST <requestId> <sessionId> <True|False>

Sends the request to speak (to request question) when Q&A session is started (last
parameter: True) or cancels the request (last parameter: False). It is similar to default *6
pressed on the DTMF keypad.

Privilege:
This request can be executed by non-moderator roles but only against connections in their
own bundle.

QA-TALK (Request to Allow/Disallow Speaking)
Format:
QA-TALK <requestId> <sessionId> <True|False>

Allows (last parameter: True) or disallows (last parameter: False) speaking (asking the
questions) for the specific call identified by <sessionId>.

Privilege:
The request is permitted for moderator roles only.

QA-TALK-NEXT (Request to Move to the Next Questioner)
Format:
QA-TALK-NEXT <requestId>

Moves to the next questioner in Q&A queue when Q&A session is started. It is similar to
default *02 pressed on the DTMF keypad. If the active questioner exists he will be muted;
the next questioner in the queue will then be unmuted to ask his question.

Privilege:
The request is permitted for moderator roles only.

 Real Time Interface
 Programmer’s Guide
32

RECORDING (Request to Start/Stop the Conference Recording)
Format:
RECORDING <requestId> <True|False>

Starts (last parameter: True) or stops (last parameter: False) the conference recording.

Privilege:
The request is permitted for moderator roles only.

SECURE (Request to Secure/Unsecure the Conference)
Format:
SECURE <requestId> <True|False>

Request to make the conference secure or unsecure. When the conference is secured no
other participants can join to this conference. True indicates that the conference must be
secured; False indicates that the conference must be unsecured.

Privilege:
The request is permitted for moderator roles only.

SET-CUSTOMNAME (Request to Change Custom Name of the Call)
Format:
SET-CUSTOMNAME <requestId> <sessionId> <customName>

Request to change (set) the custom name of the specified call identified by
<sessionId>. If customName contains spaces use single or double quotes to define
this argument as described in the beginning of this section.

Privilege:
This request can be executed by non-moderator roles only on their own connection (but not
on other connections in the bundle). Moderators can change the custom name for any call in
the conference.

SET-GAIN (Request to Change Volume Level of the Call)
Format:
SET-GAIN <requestId> <value> <sessionId>

The request to change (set) the volume level of the call. The <value> token could be
from -10 till 10 or 255; it indicates what volume level should be set for the call, 255
denotes that the volume level is being automatically generated by the backend.

 Real Time Interface
 Programmer’s Guide
33

Privilege:
This request can be executed by non-moderator roles but only against connections in their
own bundle. Moderators can change the volume level for any call in the conference.

SET-JOBCODE (Request to Change Conference Job Code)
Format:
SET-JOBCODE <requestId> <jobCode>

Changes the job code for the conference. If jobCode contains spaces use single or double
quotes to define this argument as described in the beginning of this section.

Privilege:
The request is permitted for moderator roles only.

SET-ROLE (Request to Change Role of the Connection)
Format:
SET-ROLE <requestId> <sessionId> <access-code for new role>

Privilege:
This request is executed on connections in participant’s bundle. Bundles with Audio-Key=0
are excluded in these operations. This request is allowed as long as the correct access-code
for the new role is presented.

START-BROADCAST (Start Broadcast)
Format:
START-BROADCAST <requestId>

On execution of this command all listeners are being released from hold.

Privilege:
The request is permitted for moderator roles only.

Note:
A NOTIFY-GROUP message is being sent to moderators on execution of this command as
this command results in changing the hold status of the listener group.

 Real Time Interface
 Programmer’s Guide
34

Response Format
All requests from the end point require a response from the bridge. The following format is
being followed for all responses.

Format:
RESPONSE <requestId> <ResponseCode> [<ResponseMessage>]

Responses are identified by the keyword “RESPONSE”. The requestId that was given
in the Request is being sent back in the response. The Response Code could be one of the
following:
0 – Indicating success
1 – Indicating a failure due to insufficient privilege to execute command [Permission

Denied]
2 – Indicating a failure because the connection was not found [Connection Not Found]
3 – Indicating server error
4 – Indicating that wrong input arguments were transferred to the request command

[Invalid Input]
5 – Indicating that exception occurred during the request command execution [Exception]
If the exception occurred (ResponseCode=5) the Response Message could be returned
explaining the reason why the exception occurred.

For example the RESPONSE output could be the following:
RESPONSE 44 5 There are no more users in the queue.
where 44 – the requestId, 5 – the response code [Exception], `There are no more
users in the queue.` – the textual reason of the exception.

 Real Time Interface
 Programmer’s Guide
35

Notification Format
Notifications are sent to conference users whenever there is a change in the conference
state.

The notifications messages must not be larger than 1300 bytes or be at least 200 bytes less
than the path MTU. In cases where the notifications exceed this size limit, the bridge
fragments the ordered set of notifications and sends each fragment as a separate notification
to the gateway (so the large messages are split into smaller messages).

NOTIFY-ASSOCIATE
The bridge sends this notification in response of ASSOCIATE request.

Format:
NOTIFY-ASSOCIATE <sessionId> <carrier: VoIP|PSTN> <audiokey>
<role: Moderator|Speaker|Listener>
<muteSelf: strict|relaxed|False>
<muteModer: strict|relaxed|False>
<muteQA: strict|relaxed|False> <muteActual: True|False>
<holdSelf: True|False> <holdModer: True|False>
<holdActual: True|False> <createTime>
<callerNumberDoubleQuoted> <customNameDoubleQuoted> <gain>

x <sessionId> – the token indicates the sessionId of the connection;
x <carrier: VoIP|PSTN> – the token indicates the carrier type: either VoIP or

PSTN;
x <audioKey> – the token indicates the audio-key associated with the connection; the

bridge set it to zero if no audio key was provided by the connection at join time;
x <role: Moderator|Speaker|Listener> – the token indicates the role:

Moderator, Speaker or Listener;
x <muteSelf: strict|relaxed|False> – the token indicates the self mute state

of the connection , i.e. the status of muting the call made by caller;
x <muteModer: strict|relaxed|False> – the token indicates the moderator

mute state of the connection, i.e. the status of muting the call made by moderator;
x <muteQA: strict|relaxed|False> – the token indicates the Q&A mute state

of the connection, i.e. the status of Q&A mode of the call;
x <muteActual: True|False> – the token indicates the actual mute state of the

connection: True if muted, False if un-muted;
x <holdSelf: True|False> – the token indicates the self hold state of the

connection: is the connection placed on hold or not by caller;
x <holdModer: True|False> – the token indicates the moderator hold state of the

connection: is the connection moderator placed on hold or not by moderator;
x <holdActual: True|False> – the token indicates the actual hold state of the

connection: is the entire connection placed on hold or not;

 Real Time Interface
 Programmer’s Guide
36

x <createTime> – the token indicates session (call) creation time in seconds starting
from 1/1/1970;

x <callerNumberDoubleQuoted> – the token indicates the caller number in
double quotes (");

x <customNameDoubleQuoted> – the token indicates the custom name of the caller
in double quotes (");

x <gain> – the token indicates the volume level of the call (it could be from -10 till 10
or 255 if the volume level is being set automatically by the backend).

NOTIFY-CONFERENCE
The keyword identifying the notification is NOTIFY-CONFERENCE. Each NOTIFY-
CONFERENCE keyword is followed by tokens indicating the state of the conference.

Format:
NOTIFY-CONFERENCE <confNumber> <confId>
<lockStatus: True|False> <recStatus: True|False>
<QAStatus: True|False> <createTime>

x <confNumber> – the token indicates the number of the conference;
x <confId> – the token indicates the conference identifier;
x <lockStatus: True|False> – the token indicates is the conference locked

(secured), i.e. can or cannot other participants join to the conference;
x <recStatus: True|False> – the token indicates is the conference being

recorded or not;
x <QAStatus: True|False> – the token indicates is Q&A session started for the

conference or not;
x <createTime> – the token indicates conference creation time in seconds starting

from 1/1/1970.

NOTIFY-DROP
The bridge sends an update of connections that were cleaned up, connections that left the
conference, connections that were dropped using a NOTIFY-DROP update.

Format:
NOTIFY-DROP <sessionId>

x <sessionId> – the token indicates the sessionId of the connection.

NOTIFY-GROUP
The bridge sends an update about changes to the policy table (at present this notification is
being sent only to the moderator group):

Format:
NOTIFY-GROUP <role: Moderator|Speaker|Listener> MUTE
<mute: STRICT|RELAXED|False> HOLD <hold: True|False>

 Real Time Interface
 Programmer’s Guide
37

x <role: Moderator|Speaker|Listener> – the token indicates the role:

Moderator, Speaker or Listener;
x <mute: STRICT|RELAXED|False> – the token indicates the mute state of the

group;
x <hold: True|False> – the token indicates the hold state of the group: is the group

placed on hold or not.

Note:
The NOTIFY-GROUP message is being sent to moderators along with the initial set of
NOTIFY-JOIN messages too.

NOTIFY-HOLD
Format:
NOTIFY-HOLD <holdSelf: True|False>
<holdModerator: True|False> <holdActual: True|False>
<sessionId>

x <holdSelf: True|False> – the token indicates the self hold state of the

connection: is the connection placed on hold or not by caller;
x <holdModerator: True|False> – the token indicates the self hold state of the

connection: is the connection placed on hold or not by moderator;
x <holdActual: True|False> – the token indicates the actual hold state of the

connection: is the entire connection placed on hold or not;
x <sessionId> – the token indicates the sessionId of the connection.

NOTIFY-JOIN
The bridge sends a notification to VoIP participants (immediately after they join) about the
current state of the conference. The keyword identifying the notification is NOTIFY-
JOIN. Each NOTIFY-JOIN keyword is followed by tokens indicating the state of each
connection.

Format:
NOTIFY-JOIN <sessionId> <carrier: VoIP|PSTN> <audioKey>
<role: Moderator|Speaker|Listener>
<muteSelf: strict|relaxed|False>
<muteModer: strict|relaxed|False>
<muteQA: strict|relaxed|False> <muteActual: True|False>
<holdSelf: True|False> <holdModer: True|False>
<holdActual: True|False> <createTime>
<callerNumberDoubleQuoted> <customNameDoubleQuoted> <gain>

x <sessionId> – the token indicates the sessionId of the connection;
x <carrier: VoIP|PSTN> – the token indicates the carrier type: either VoIP or

PSTN;

 Real Time Interface
 Programmer’s Guide
38

x <audioKey> – the token indicates the audio-key associated with the connection; the
bridge set it to zero if no audio key was provided by the connection at join time;

x <role: Moderator|Speaker|Listener> – the token indicates the role:
Moderator, Speaker or Listener;

x <muteSelf: strict|relaxed|False> – the token indicates the self mute state
of the connection , i.e. the status of muting the call made by caller;

x <muteModer: strict|relaxed|False> – the token indicates the moderator
mute state of the connection, i.e. the status of muting the call made by moderator;

x <muteQA: strict|relaxed|False> – the token indicates the Q&A mute state
of the connection, i.e. the status of Q&A mode of the call;

x <muteActual: True|False> – the token indicates the actual mute state of the
connection: True if muted, False if un-muted;

x <holdSelf: True|False> – the token indicates the self hold state of the
connection: is the connection placed on hold or not by caller;

x <holdModer: True|False> – the token indicates the moderator hold state of the
connection: is the connection moderator placed on hold or not by moderator;

x <holdActual: True|False> – the token indicates the actual hold state of the
connection: is the entire connection placed on hold or not;

x <createTime> – the token indicates session (call) creation time in seconds starting
from 1/1/1970;

x <callerNumberDoubleQuoted> – the token indicates the caller number in
double quotes (");

x <customNameDoubleQuoted> – the token indicates the custom name of the caller
in double quotes (");

x <gain> – the token indicates the volume level of the call (it could be from -10 till 10
or 255 if the volume level is being set automatically by the backend).

The initial state updates a NOTIFY-JOIN line for each connection.
The bridge sends a message about participants joining the conference to other participants
in the conference using the same NOTIFY-JOIN format.

NOTIFY-LOCK
Format:
NOTIFY-LOCK <lockStatus: True|False>

x <lockStatus: True|False> – the token indicates is the conference locked

(secured), i.e. can or cannot other participants join to the conference.

NOTIFY-MUTE
The bridge sends an update when the mute status or audio key changes.

 Real Time Interface
 Programmer’s Guide
39

Format:
NOTIFY-MUTE <muteSelf: strict|relaxed|False>
<muteModer: strict|relaxed|False>
<muteQA: strict|relaxed|False> <muteActual: True|False>
<sessionId>

x <muteSelf: strict|relaxed|False> – the token indicates the self mute state

of the connection , i.e. the status of muting the call made by caller;
x <muteModer: strict|relaxed|False> – the token indicates the moderator

mute state of the connection, i.e. the status of muting the call made by moderator;
x <muteQA: strict|relaxed|False> – the token indicates the Q&A mute state

of the connection, i.e. the status of Q&A mode of the call;
x <muteActual: True|False> – the token indicates the actual mute state: True if

muted, False if un-muted;
x <sessionId> – the token indicates the sessionId of the connection.

NOTIFY-OPERATOR-CONNECT
The bridge sends an update when the operator is being connected to another conference, for
instance when the request OPERATOR_LISTEN (Operator Request to Listen the
Conference) is implemented.

Format:
NOTIFY-OPERATOR-CONNECT {True <confNumber>
<Mode: Direct|Shunt> <Mute: True|False>}|False

x True – in the first token indicates that the operator is being connected to the

conference, False – in the first token indicates that the operator is being disconnected
from the conference;

x <confNumber> – the token indicates the number of the conference the operator
connected and started listening;

x <Mode: Direct|Shunt> – the token indicates the connection mode: Direct
denotes that the operator is being directly connected to the requested conference (in this
case only operator can hear the requested conference, the user connected to the operator
can not hear that conference), Shunt denotes that between operator conference and
requested conference is being made the shunt and both conferences can hear each other
(operator and the connected user both can hear the requested conference);

x <Mute: True|False> – the token indicates is the operator muted or not: True
denotes that the operator is muted, so he can only hear the specified conference and he
is unable to talk, False denotes that the operator is not muted, so he can hear and talk
in the specified conference.

NOTIFY-OPERATOR-QUEUE
The bridge sends this notification when either the user was added to the operator queue or
when the user was removed from the operator queue.

 Real Time Interface
 Programmer’s Guide
40

Format:
NOTIFY-OPERATOR-QUEUE {ADD <confNumber> <sessionId> <flag>|

DEL <confNumber> <sessionId>}

x {ADD|DEL} – the token indicates was the user placed into the operator queue (ADD) or

was the user removed from the operator queue (DEL);
x <confNumber> – the token indicates the number of the conference where the user is

came from, if the user conference is not defined (for instance when the user came to the
operator queue after unsuccessful attempts to enter access codes) the conference
number in this token is equal 0;

x <sessionId> – the token indicates the sessionId of the call that was added to or
removed from the operator queue;

x <flag> – the token value False indicates that the user is waiting operator assistance
in the operator queue (after he pressed *01), the token value True indicates that the
request to operator assistance was post by the user (after he pressed *02) and he is
waiting operator in his own conference.

NOTIFY-OPERATOR-SCAN
The bridge sends an update when the operator started or stopped the conference monitoring,
i.e. surveillance call.

Format:
NOTIFY-OPERATOR-SCAN True|False

x True|False – the token indicates was the conference scanning started (True) or

stopped (False).

NOTIFY-OPERATOR-SCAN-ACTIVE
The bridge sends an update when the operator connected or disconnected to/from the
specific conference when conference monitoring (surveillance call) is started.

Format:
NOTIFY-OPERATOR-SCAN-ACTIVE {True <confNumber>}|False

x True|False – the token indicates that the operator was connected to the conference

(True) or disconnected from the conference (False);
x <confNumber> – the token indicates the number of the specific conference the

operator connected during the scanning process.

NOTIFY-OPERATOR-STATUS
The bridge sends an update when the operator status is being changed, either when the
operator started talking to the user from his queue, or when the operator started listening
other conference or when the operator completed conversation with the user or conference
listening. The sense of this notification is to show whether the operator is available (free) to

 Real Time Interface
 Programmer’s Guide
41

respond to the user call from his queue or the operator is unavailable either because he is
talking to another user or because he is listening another conference.

Format:
NOTIFY-OPERATOR-STATUS <Status: Free|Talk|Listening>

x <Status: Free|Talk|Listening> – the token indicates the operator status in

the conference: Free denotes that the operator neither talking to the user, nor listening
other conferences; Talk denotes that the operator is talking to the user from the
operator queue, Listening denotes that the operator is listening other conference.

NOTIFY-OPERATOR-TALK
The bridge sends an update when the operator started or stopped talking to the user from his
queue.

Format:
NOTIFY-OPERATOR-TALK {True <confNumber> <sessionId>}|False

x True|False – the token indicates that the operator is started talking to the user from

his queue (True) or stopped talking to the user (False);
x <confNumber> – the token indicates the number of the conference where the user is

came from, if the user conference is not defined (for instance when the user came to the
operator queue after unsuccessful attempts to enter access codes) the conference
number in this token is equal 0;

x <sessionId> – the token indicates the sessionId of the call the operator is talking
with.

NOTIFY-QA_MODE
Format:
NOTIFY-QA_MODE <QAStatus: True|False>

x <QAStatus: True|False> – the token indicates is Q&A session started for the

conference.

NOTIFY-QA_STATUS
Format:
NOTIFY-QA_STATUS <sessionId> <QARequest: True|False>
<QATalk: True|False> <QARequestTime: True|False>

x <sessionId> – the token indicates the sessionId of the connection;
x <QARequest: True|False> – the token indicates if the participant requested to

talk when Q&A session is started;
x <QATalk: True|False> – the token indicates if the participant allowed to talk

after his request to talk when Q&A session is started (when QATalk is True,
QARequest is always True as well);

 Real Time Interface
 Programmer’s Guide
42

x <QARequestTime> – the token indicates Q&A request creation time in seconds
starting from 1/1/1970.

NOTIFY-RECORDING
Format:
NOTIFY-RECORDING <recStatus: True|False>

x <recStatus: True|False> – the token indicates is the conference being

recorded or not.

NOTIFY-SET_CUSTOMNAME
The following updates are sent when the caller’s custom name has been changed:

Format:
NOTIFY-SET_CUSTOMNAME <sessionId> <customNameDoubleQuoted>

x <sessionId> – the token indicates the sessionId of the connection;
x <customNameDoubleQuoted> – the token indicates the custom name of the caller

in double quotes (").

NOTIFY-SET_GAIN
The following updates are sent when the caller’s volume level has been changed (for
instance when the request SET-GAIN (Request to Change Volume Level of the Call) is
implemented):

Format:
NOTIFY-SET_GAIN <sessionId> <gain>

x <sessionId> – the token indicates the sessionId of the connection;
x <gain> – the token indicates the volume level of the call (it could be from -10 till 10

or 255 if the volume level is being set automatically by the backend).

NOTIFY-SET-ROLE
The following updates are sent when the SET-ROLE request is implemented:

Format:
NOTIFY-SET-ROLE <sessionId>
<role: Moderator|Speaker|Listener>

x <sessionId> – the token indicates the sessionId of the connection;
x <role: Moderator|Speaker|Listener> – the token indicates the role:

Moderator, Speaker or Listener.

 Real Time Interface
 Programmer’s Guide
43

NOTIFY-TERMINATION
The following updates are sent when the call is being terminated by the bridge. This
notification is being sent only to the call that will be dropped, and it will be sent prior to
close the connection of the call.

Format:
NOTIFY-TERMINATION <sessionId> "<DisconnectReason>"

x <sessionId> – the token indicates the sessionId of the connection;
x <DisconnectReason> – the token indicates the reason why the call has been

disconnected.

 Real Time Interface
 Programmer’s Guide
44

Appendix A: Support Resources
If you have difficulty with this guide and any of the procedures listed herein, please contact
us using the following support resources.

Support Documentation
In addition to this Guide, you may obtain other WYDE Voice documentation from WYDE
Voice or from the WYDE Voice documentation Web site: http://docs.wydevoice.com/.

Web Support
Our support website is available 24 hours a day, 7 days a week, and 365 days a year at
http://www.wydevoice.com. You may download patches, support documentation and other
technical support information.

Telephone Support
For difficulties with any procedures described in this Guide, please contact us at 866-508-
9020 during our normal phone support hours of 7:00 am to 6:00 pm Pacific Standard Time
(PST). An engineer will respond to your inquiry within 24 hours.

Email Support
You may also email us your questions at support@wydevoice.com. We will respond to
your question within 24 hours.

http://docs.wydevoice.com/
http://www.wydevoice.com/
mailto:support@wydevoice.com

	Chapter 1: Introduction
	Assumed Skills
	Basic Concepts
	Real Time Interface
	Session Initiation Protocol (SIP)
	Real-time Transport Protocol (RTP)
	Active Speaker Daemon (ASD)

	Definitions, Acronyms and Abbreviations

	 Chapter 2: RT Interface Transports Protocols
	SIP Transport
	Control Protocol Format
	Keep-Alive Mechanism
	Joining a Conference
	Join Response
	Leaving a Conference
	Keep-Alive Format
	Active Speaker Notifications in Real Time Protocol

	ASD Transport
	Configuration
	Authorization
	Calls to Conferences
	Active Speaker Notifications in ASD
	Real Time Commands Requests in ASD

	Bundling Connections Using Audio Keys

	 Chapter 3: Message Format Reference
	Request Format
	ASSOCIATE (Request to Change Audio Key of the Connection)
	CONF-DROP (Request to Drop the Conference)
	DROP (Request to Drop the Connection)
	HOLD (Request to Change Hold Status of the Connection)
	HOLD-GROUP (Request to Change Group Hold Policy)
	MUTE (Request to Mute the Connection)
	MUTE-GROUP (Request to Change Group Mute Policy)
	MUTE-SELF (Request to Self-Mute the Connection)
	OPERATOR_CALL_MOVE (Request to Move the Current User to other Conference)
	OPERATOR_DIALOUT (Request to Dialout from Operator Conference)
	OPERATOR_LISTEN (Operator Request to Listen the Conference)
	OPERATOR_REJECT (Operator Request to Reject the User from the Queue)
	OPERATOR_SCAN (Operator Request to Scan Conferences)
	OPERATOR_TALK (Operator Request to Talk to the User)
	PLAY-FILE (Request to Control the Audio File Playback)
	QA-CLEAR-QUEUE (Request to Clear Q&A Queue)
	QA-MODE (Request to Start/Stop Q&A Mode)
	QA-MUTE (Request to Mute/Unmute the Current Questioner)
	QA-REQUEST (Request to Speak in Q&A Sessions)
	QA-TALK (Request to Allow/Disallow Speaking)
	QA-TALK-NEXT (Request to Move to the Next Questioner)
	RECORDING (Request to Start/Stop the Conference Recording)
	SECURE (Request to Secure/Unsecure the Conference)
	SET-CUSTOMNAME (Request to Change Custom Name of the Call)
	SET-GAIN (Request to Change Volume Level of the Call)
	SET-JOBCODE (Request to Change Conference Job Code)
	SET-ROLE (Request to Change Role of the Connection)
	START-BROADCAST (Start Broadcast)

	Response Format
	Notification Format
	NOTIFY-ASSOCIATE
	NOTIFY-CONFERENCE
	NOTIFY-DROP
	NOTIFY-GROUP
	NOTIFY-HOLD
	NOTIFY-JOIN
	NOTIFY-LOCK
	NOTIFY-MUTE
	NOTIFY-OPERATOR-CONNECT
	NOTIFY-OPERATOR-QUEUE
	NOTIFY-OPERATOR-SCAN
	NOTIFY-OPERATOR-SCAN-ACTIVE
	NOTIFY-OPERATOR-STATUS
	NOTIFY-OPERATOR-TALK
	NOTIFY-QA_MODE
	NOTIFY-QA_STATUS
	NOTIFY-RECORDING
	NOTIFY-SET_CUSTOMNAME
	NOTIFY-SET_GAIN
	NOTIFY-SET-ROLE
	NOTIFY-TERMINATION

	 Appendix A: Support Resources
	Support Documentation
	Web Support
	Telephone Support
	Email Support

