

Call Flow
Development –
Programmer’s Guide

(version 2.2)

 Call Flow Development
 Programmer’s Guide
2

Disclaimer
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN
THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL
ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL
RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE
ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET
THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY
THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR WYDE VOICE REPRESENTATIVE
FOR A COPY.

IN NO EVENT SHALL WYDE VOICE OR ITS SUPPLIERS BE LIABLE FOR ANY
INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES,
INCLUDING, WITHOUT LIMITATION LOST PROFITS OR LOSS OR DAMAGE TO
DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN
IF WYDE OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Copyright
Except where expressly stated otherwise, the Product is protected by copyright and other
laws respecting proprietary rights. Unauthorized reproduction, transfer, and or use can be a
criminal, as well as civil, offense under the applicable law.

WYDE Voice and the WYDE Voice logo are registered trademarks of WYDE Voice LLC
in the United States of America and other jurisdictions. Unless otherwise provided in this
Documentation, marks identified with “R” / ®, “TM” / ™ and “SM” are registered marks;
trademarks are the property of their respective owners.

For the most current versions of documentation, go to the WYDE support Web site:
http://docs.wydevoice.com/

September 30, 2010

http://docs.wydevoice.com/

 Call Flow Development
 Programmer’s Guide
3

Symbols and Notations in this Manual

The following notations and symbols can be found in this manual.

Denotes any item that requires special attention or care. Damage to the
equipment or the operator may result from failure to take note of the noted
instructions

Figure Denotes any illustration

Table Denotes any table

Text Denotes any text output

Folder/File Denotes any folders (paths) or files names

commands Denotes any callback handlers, DTMF commands, attributes and
parameters

 Call Flow Development
 Programmer’s Guide
4

Table of Contents
Symbols and Notations in this Manual... 3
Table of Contents ... 4

Tables List .. 6
Figures List ... 7

Chapter 1: Introduction... 8
Assumed Skills ... 8
Asterisk Extension Language ... 8
Assumptions ... 9
Definitions .. 10

Chapter 2: Samples of Call Flows .. 13
Sample 1 – Simple Call Flow without Authorization .. 15
Sample 2 – Call Flow with Authorization.. 17
Sample 3 – Call Flow with DTMF Processing... 21
Sample 4 – Call Flow with Custom Handlers .. 25

Chapter 3: Function Reference... 31
Callback Handlers .. 31

entry_handler .. 31
fastjoin_handler .. 31
conf_enter_handler ... 32
waitmoderator_handler... 32
holdline_handler ... 32
welcome_handler.. 32
gotomp_handler .. 32
recstop_handler... 33
terminate_handler ... 33
hangup_handler .. 34

DTMF commands... 34
call_participantsnumber.. 34
call_exit .. 34
call_instructions.. 34
call_mute_switch .. 34
conference_mute_switch .. 35
conference_lock_switch ... 35
conference_entryexittones_switch.. 35
conference_qa_moderator .. 35
recording_switch .. 36

Dialplan commands and functions ... 36
WYDE_Playback ... 36
WYDE_Input.. 36
WYDE_Choice... 37
WYDE_AGIRequest .. 37
WYDE_IVRStat ... 37
WYDE_IVRConfStat ... 38
WYDE_IVRVar ... 39

 Call Flow Development
 Programmer’s Guide
5

WYDE_IVRCheckRole ... 39
Appendix A: Call Flow Library ... 40

/usr/local/DNCA/lib/CallFlows/functions.ael .. 40
Appendix B: Support Resources .. 45

Support Documentation.. 45
Web Support ... 45
Telephone Support.. 45
Email Support ... 45

 Call Flow Development
 Programmer’s Guide
6

Tables List
Table 1: SAMPLE Call Flow Folder Structure and Contents .. 13

 Call Flow Development
 Programmer’s Guide
7

Figures List
Figure 1: Register New SAMPLE Call Flow on the Bridge .. 14
Figure 2: New SAMPLE Call Flow ... 14
Figure 3: New DNIS 8665089020 for SAMPLE Call Flow .. 15
Figure 4: Calls Screen for the Conference – Sample 1 Call Flow (without Authorization). 17
Figure 5: Two Created Conference Accounts with Host and Participants Roles................. 18
Figure 6: Calls Screen for the Conference – Sample 2 Call Flow (with Authorization)...... 21
Figure 7: Calls Report – Sample 2 Call Flow (with Authorization)..................................... 21
Figure 8: SAMPLE Call Flow with New Lock and Mute Attributes................................... 24
Figure 9: Calls Screen for the Conference – Sample 3 Call Flow (with DTMF Processing)
.. 25
Figure 10: SAMPLE Call Flow with New Custom Attributes... 30

 Call Flow Development
 Programmer’s Guide
8

Chapter 1: Introduction
Call flow is a unique conference service setup, the logic that is used to process the
conference calls. This is the process a call goes through from call setup to, to processing, to
call tear down. It is possible to create own call flow and customize existing call flow. This
guide describes how to do it.

AEL2 language (Asterisk Extension Language v.2) is used to write call flow scenarios.
When you write own call flows you can either use standard applications and functions
available in AEL2 or use procedures and functions provided by WYDE bridge
environment.

Assumed Skills
This call flow development programmer’s guide assumes you have a working knowledge of
the following technologies and skills:
x PC usage
x System administration
x Asterisk administration and configuration
x AEL basics
x VOIP basics
x TCP/IP networking
x Web Administration Interface – User Guide

Asterisk Extension Language
Asterisk is software that turns an ordinary computer into a voice communications server.
Asterisk is the worlds most powerful and popular telephony development tool-kit. It is used
by small businesses, large businesses, call centers, carriers and governments worldwide.
Asterisk is open source and is available free to all under the terms of the GPL.

The Asterisk software includes many features available in proprietary PBX systems: voice
mail, conference calling, interactive voice response (phone menus), and automatic call
distribution. Users can create new functionality by writing dial plan scripts in several of
Asterisk's own extensions languages, by adding custom loadable modules written in C, or
by implementing Asterisk Gateway Interface (AGI) programs using any programming
language capable of communicating via the standard streams system (stdin and stdout) or
by network TCP sockets.

Perhaps one of more interest to many deployers today, Asterisk also supports a wide range
of Video and Voice over IP protocols, including SIP, MGCP and H.323. Asterisk can
interoperate with most SIP telephones, acting both as registrar and as a gateway between IP
phones and the PSTN. Asterisk developers have also designed a new protocol, Inter-
Asterisk eXchange (IAX2), for efficient trunking of calls among Asterisk PBXes, and to
VoIP service providers who support it. Some telephones support the IAX2 protocol
directly.

 Call Flow Development
 Programmer’s Guide
9

AEL v.2 is intended to provide an actual programming language that can be used to write
an Asterisk dialplan. It further extends AEL, and provides more flexible syntax, better error
messages, and some missing functionality.
AEL v.2 is a new version of the AEL compiler. It was originally introduced as a large
asterisk patch in the Asterisk bug database.

AEL is really the merger of 4 different 'languages', or syntaxes:
x The first and most obvious is the AEL v.2 syntax itself. A BNF is provided near the end

of this document.
x The second syntax is the Expression Syntax, which is normally handled by Asterisk

extension engine, as expressions enclosed in $[...]. The right hand side of assignments
are wrapped in $[...] by AEL, and so are the if and while expressions, among others.

x The third syntax is the Variable Reference Syntax, the stuff enclosed in ${..} curly
braces. It's a bit more involved than just putting a variable name in there. You can
include one of dozens of 'functions', and their arguments, and there are even some string
manipulation notations in there.

x The last syntax that underlies AEL/AEL2, and is not used directly in AEL/AEL2, is the
Extension Language Syntax. The extension language is what you see in
extensions.conf, and AEL2 compiles the higher level AEL2 language into extensions
and priorities, and passes them via function calls into Asterisk. Embedded in this
language is the Application/AGI commands, of which one application call per step, or
priority can be made. You can think of this as a "macro assembler" language that AEL2
will compile into.

Any programmer of AEL should be familiar with its syntax, of course, as well as the
Expression syntax, and the Variable syntax.

The detail information about AEL can be read in the following articles:
x The Open Source Telephony Project Asterisk – http://www.asterisk.org/
x Asterisk Extension Language on Voip-Info.org – http://www.voip-

info.org/wiki/view/Asterisk+AEL2
x Asterisk on WikipediA.org – http://en.wikipedia.org/wiki/Asterisk_PBX

Assumptions
Each call flow scenario should be placed in its own folder – the subfolder of
/usr/local/DNCA/callflows folder that is root folder for call flow scenarios.
This folder should contain the following files:
x script.ael – Asterisk dialplan on AEL language;
x callflow.spec – specification of the scenario;
and this folder also should contain subfolder:
x sounds – the set of voice files for different supported codecs (such as al, amrwb, g722,

g729, ilbc, isac, siren7, ulaw, etc.), the file name for different formats is being formed
as <audio file name>.<codec>;

and optionally if you would like to use custom music-on-hold sound file for your call flow,
your call flow folder should contain subfolder:

http://www.asterisk.org/
http://www.voip-info.org/wiki/view/Asterisk+AEL2
http://www.voip-info.org/wiki/view/Asterisk+AEL2
http://en.wikipedia.org/wiki/Asterisk_PBX

 Call Flow Development
 Programmer’s Guide
10

x moh – the set of music-of-hold audio files in different supported codecs, i.e. the files
musiconhold.<codec> for the formats al, amrwb, g722, g729, ilbc, isac, siren7, ulaw,
etc.

When you write call flow scenarios you should follow to the following assumptions and
regulations:
x to customize the call flow scenario the callback procedures are used, these procedures

are written on AEL language and these procedures are being called by WYDE bridge
environment in all key-points of the processing of the calls;

x each callback procedure is being defined in the script.ael file as separate AEL scope
(context);

x the callback procedure either returns processing to call flows execution environment
using Return() command or interrupts the call using Hangup()command;

x the binding of the callback procedures and descriptors is being made in the
callflow.spec file in the handlers section;

x the script.ael file should contain the definition for at least one callback procedure – this
callback procedure should be bound with the call entry point (entry_handler);

x the names of the procedures (scopes/contexts) defined in the script.ael file should be
unique and should not match to the names defined in other call flow scenarios and
should not match to the names of the call flows execution environment core;

x the audio files for music-on-hold prompts are being searched in the following order:
o if the music-on-hold file name defined in confefence_moh call flow attribute

value is not empty and is not equal to `default`, the system checks the conference
recording folder (usually /usr/local/DNCA/var/recordings/ folder) upload subfolder
for the specific conference, the files could be uploaded into this folder using Web
Control Console (for example the folder name could be
/usr/local/DNCA/var/recordings/673/946673/upload/);

o if the file was not found in the previous location, the system searches the file in
/usr/local/DNCA/var/moh folder, the files could be uploaded into this folder using
Web Administration Interface;

o otherwise, if the file not found, the system treats confefence_moh call flow
attribute value as equal to `default`, and searches the audio files in
/usr/local/DNCA/callflows/<call flow name>/moh/ folder, files
musiconhold.<codec> for specific codecs;

o if the audio file was not found in the previous location, the system uses the files
musiconhold.<codec> for specific codecs from /usr/local/DNCA/lib/sounds/moh/
folder.

Definitions
In order to discuss the WYDE call flows development effectively, we need to have a
common set of terminology. For this purpose, we should definite the dictionary for the
terms you will see throughout this programmer’s guide:
x Call Flow – A unique conference service setup, the logic that is used to process the

conference calls. This is the process a call goes through from call setup to, to
processing, to call tear down. It includes the logic, DTMF key-presses used, functions,

 Call Flow Development
 Programmer’s Guide
11

and the recorded prompts. There are two basic call flow categories: call flows without
authentication and call flows with authentication.

x Attribute – In terms of WYDE web services API, a data structure is used to carry
attributes for call flow, DNIS and conference account (user). The attributes skeleton is
defined by call flow; other attributes can only override some of them, so for instance
when a user called in to the conference DNIS it gets attributes exposed by the call flow,
but some of these attributes can be already altered by the DNIS. Each attribute has
name, type, value, and role.

x Subscriber – A real person, he has a name, phone number, e-mail address, etc. The
subscriber can have conference accounts, he does not have access codes, but access
codes are properties of conference accounts that have subscribers. Note that non-admin
(non-operator) subscribers can see only “own” information, i.e. his information and
information that belongs to subscribers created by him, he can see only their calls,
conferences, the reports will show only their data, etc.

x PIN – The login ID for the subscriber (must be unique). It can be used either as login in
Web Administration Interface (in this case it can be either number or alpha-numeric) or
as login for some call flows (in this case must be numeric) for participants
authorization.

x Conference Account – The element of subscriber conferences configuration.
Conference accounts always belong to subscriber. It is being used to define a person in
a conference with a particular role (e.g. host, participant, listener, etc.), the DNIS
number that should be used to call to the conference, and the access code that should be
entered by the user that called to the conference DNIS to determine his role. A
subscriber could be a host user in one conference and a listener in another. Conference
accounts with the same conference number represent single conference setup.

x DNIS – A unique set of numbers that is outpulsed by a phone carrier that indicates the
intended destination for a particular call. It can be any length digits (although usually 10
digits). DNIS is the property of the conference account, but different DNIS numbers
can be used to connect to the same conference.

x Access Code – A numeric code unique for DNIS that allows a host or participant or
listener access to a conference call. When users call to DNIS number they being asked
to enter their access code. The access code determines the conference and the user role
in the conference. Different access codes can determine the same conference, for
instance one access code can determine the connected user has host role, another access
code can determine that connected user has participant role, and another access code
can determine that connected user has listener role.

x Host – A user in the conference call that can make changes to the system while the
conference call is in progress. Like change the security setting, change who can talk or
answer, etc. Sometimes the host user is called moderator. This user role is defined in
conference account.

x Participant – A person in the conference who can actively participate in a call by both
talking and listening. This user role is defined in conference account.

x Listener – A person in the conference who can hear the conference call, but cannot
speak. Their audio path is one way only (receive). This user role is defined in
conference account.

 Call Flow Development
 Programmer’s Guide
12

x Conference Number – A unique external conference number. Conference number is
the property of conference account. If the conference accounts have the same
conference number all these accounts determine one single conference. For instance the
user can create one conference account record that determine host role, another
conference account record that determine participant role, and another conference
account record that determine listener role – all these records should have the same
conference number to determine one unique conference.

x Conference ID – A unique conference ID that represents the instance of a conference.
When any conference is being started it receives unique conference ID, and all calls to
this conference have the same conference ID; if this conference has been completed and
another conference is being started that conference will receive another conference ID.
Conference ID is normally not exposed to users, unless on the reports.

x Conference – A data structure is used to describe ongoing conference on the bridge.
Objects of this type are only created by server. User may fetch these objects by calling
appropriate function. When conference is over the conference object is deleted by the
server.

x Session – A data structure represents a single ongoing call on the server. User can not
directly create this object. When the call is over server automatically deletes this object.
Normally this data structure is used to get information about call attributes like
calling/called number etc., or do something with the call, for instance mute, hang, hold
etc.

 Call Flow Development
 Programmer’s Guide
13

Chapter 2: Samples of Call Flows
In this section we will explain how to write call flows and we will give few samples of call
flow scripts.

Let’s assume that for samples purposes we create call flow with name SAMPLE. To do that
we need to create directory /usr/local/DNCA/callflows/SAMPLE, it will be the working
directory for the call flow SAMPLE. This folder will contain two files: callflow.spec and
script.ael; the content of these files will be different for each sample and this content will
define the call flow behavior. Also we need to create subdirectory sounds
(/usr/local/DNCA/callflows/SAMPLE/sounds) to put audio (voice) files in different
supported codecs/formats (such as al, amrwb, g722, g729, ilbc, isac, siren7, ulaw, etc.) into
this folder. In addition if we need to pronounce numbers we need to create subdirectory
digits in directory sounds (/usr/local/DNCA/callflows/SAMPLE/sounds/digits) and put the
files 0.al, 0.amrwb, 0.g722, 0.g729, 0.ilbc, 0.isac, 0.siren7, 0.ul, 1.al, 1.amrwb, 1.g722,
1.g729, 1.ilbc, 1.isac, 1.siren7, 1.ul, 2.al, 2.amrwb, 2.g722, 2.g729, 2.ilbc, 2.isac, 2.siren7,
2.ul, etc. into it. Note that it is not necessary to have the audio files in all codes; it is enough
having them only in formats that you are going to use. All samples described in this guide
use the audio files in ulaw format only. See “Command Line Administration Interface –
User Guide”, section “Audio Prompts Management” for information how to convert the
audio files from one audio codec to another format.
SAMPLE call flow folder structure is shown in Table 1.
Click here to download all sounds files in ulaw format that are necessary to implement
these samples.
Folder or File Name Description

 SAMPLE call flow root folder
 callflow.spec Asterisk dialplan on AEL language file
 script.ael specification of the scenario file
 sounds audio (voice) files folder

accesscode_accepted.ul audio file that pronounces “access code accepted” message
callers.ul audio file that pronounces “callers” message
enter_accesscode.ul audio file that pronounces “enter access code” message
incorrect_accesscode.ul audio file that pronounces “incorrect access code” message
thereare.ul audio file that pronounces “there are” message
welcome.ul audio file that pronounces “welcome” message
 digits digits audio files folder (to pronounce numbers)

0.ul 1.ul 2.ul 3.ul
4.ul 5.ul 6.ul 7.ul 8.ul
9.ul 10.ul 11.ul 12.ul
13.ul 14.ul 15.ul 16.ul
17.ul 18.ul 19.ul 20.ul
30.ul 40.ul 50.ul 60.ul
70.ul 80.ul 90.ul
hundred.ul thousand.ul

audio files that pronounce numbers (i.e. “zero”, “one”, ...,
“ten”, “eleven”, “twelve”, ..., “twenty”, “thirty”, ..., “ninety”,
“hundred”, “thousand”)

Table 1: SAMPLE Call Flow Folder Structure and Contents

http://docs.wydevoice.com/2_2/downloads/CallFlowDev/sounds.zip
http://docs.wydevoice.com/2_2/downloads/CallFlowDev/sounds.zip

 Call Flow Development
 Programmer’s Guide
14

Let’s assume that DID number for new call flow is 8665089020. To register new SAMPLE
call flow and assign it to the DID the following commands should be executed:
cd /usr/local/DNCA/callflows/SAMPLE
wyde callflow-add name SAMPLE
wyde did-add number 8665089020 callflow SAMPLE

Figure 1: Register New SAMPLE Call Flow on the Bridge

The cd command is being executed to make SAMPLE call flow directory the current
folder; wyde callflow-add command creates new call flow (see Figure 2); wyde
did-add command creates and associates new DNIS (DID) number with the specified
call flow (see Figure 3).

Figure 2: New SAMPLE Call Flow

 Call Flow Development
 Programmer’s Guide
15

Figure 3: New DNIS 8665089020 for SAMPLE Call Flow

If the call flow already exists to update its attributes in a database the following command
should be executed:
wyde callflow-attr-update-db callflow SAMPLE
This command should be executed if callflow.spec file was updated. If the changes were
made in the script.ael file only, it is not necessary to run this command.

To send the signal on the WYDE bridge to the call flow engine to reload the scripts the
following command should be executed:
wyde callflow-reload
This command should be execute if there were changes in the script.ael file or sound files
were updated. If the changes were made in the callflow.spec file only, it is not necessary to
run this command.
Note this command reloads all call flows.

As soon as these commands are executed you can call to the number 8665089020;
SAMPLE call flow will process these calls to 8665089020 number.

Sample 1 – Simple Call Flow without Authorization
Let’s review the following call flow scenario:
x when the call is made we need to playback “welcome” prompt (message);
x after that we need to join the call to the conference with the number equal to the called

number;
x the role of the caller in the conference should be “participant”.

To implement this scenario we need to create the following callflow.spec and script.ael
files with the following contents:

 Call Flow Development
 Programmer’s Guide
16

callflow.spec
[handlers]
entry_handler = sample_entry_handler

script.ael
context sample_entry_handler {
 s => {
 WYDE_Playback(welcome);
 Set(conf_number=${called_number});
 Set(role=participant);
 Return();
 }
}

Let’s consider the implemented logic in details. The callflow.spec file defines that
sample_entry_handler handler should be used as entry_handler of the call.
The script.ael file contains the contents (context) of sample_entry_handler.
WYDE_Playback(welcome); // Play the prompt from a welcome.ul
file.

Set(conf_number=${called_number}); // Set the value of
conf_number variable equal to called_number (8665089020 in
our sample).

Set(role=participant); // Set the value of role variable
equal to participant, i.e. the caller will be connected to
the conference with “participant” role.

Return(); // Return processing to call flows execution
environment (the call flow engine context).
Note 1. To join the call to the conference the WYDE bridge call flows execution
environment should know the conference number and the caller role. In our sample the
conference number is equal to called number (8665089020) and the role is always
participant.
Note 2. If it was not previously made, do not forget to place welcome.ul audio file into
sounds subfolder of SAMPLE folder of the call flow.

If the call flow SAMPLE does not exist to register our new call flow and assign it to the
DID 8665089020 the following commands should be executed (as it was previously
described in this guide):
cd /usr/local/DNCA/callflows/SAMPLE
wyde callflow-add name SAMPLE
wyde did-add number 8665089020 callflow SAMPLE

If the call flow already was created to update its attributes in a database the following
command should be executed:
wyde callflow-attr-update-db callflow SAMPLE

 Call Flow Development
 Programmer’s Guide
17

To send the signal on the WYDE bridge to the call flow engine to reload the scripts the
following command should be executed:
wyde callflow-reload

Now if you call to the number 8665089020 you can hear “welcome” message and after that
your call will be joined to the conference with number 8665089020. For instance if two
callers call to 8665089020 number you will see the calls conference screen similar to
shown on Figure 4.

Figure 4: Calls Screen for the Conference – Sample 1 Call Flow (without Authorization)

Click here to download the Sample 1. The archive files from SAMPLE1 folder should be
extracted into SAMPLE folder of your call flow.

Sample 2 – Call Flow with Authorization
Let’s review the following call flow scenario:
x when the call is made we need to playback “welcome” prompt (message);
x after that we need to ask to enter access code;
x we need to make authorization request based on called number and access code entered;
x if authorization is successful we need to playback “access code accepted” message and

connect the call to the conference;
x if authorization is unsuccessful we need to set disconnect reason equal “Incorrect access

code”, playback “incorrect access code” message and disconnect the call.

We assume that the conference accounts (conference users) should be created for the
conference and conference number and access codes should be defined prior the call. This
can be made using the following commands:
wyde confuser-add subscriber admin did 8665089020 conference
267996 role Host accesscode 1111

wyde confuser-add subscriber admin did 8665089020 conference
267996 role Participant accesscode 2222
In our sample the subscriber PIN is admin, DNIS (DID) number is 8665089020, the
conference number is 267996, and conference accounts with two roles are created: the host
with access code 1111 and the participant with access code 2222.

http://docs.wydevoice.com/2_2/downloads/CallFlowDev/SAMPLE1.zip

 Call Flow Development
 Programmer’s Guide
18

This also can be made using Web Administration Interface. See “Web Administration
Interface – User Guide”, Chapter 2: Web Administration Interface, Section: Create a
Conference Account, if you need assistance in creation of new conference accounts.
Created conference accounts can be seen on Figure 5.

Figure 5: Two Created Conference Accounts with Host and Participants Roles

To implement the requested scenario the contents of callflow.spec and script.ael files
should be the following:

callflow.spec
[handlers]
entry_handler = sample_entry_handler

[attributes]
dnis_authorizemethod = local

 Call Flow Development
 Programmer’s Guide
19

script.ael
context sample_entry_handler {
 s => {
 WYDE_Playback(welcome);
 WYDE_Input(enter_accesscode|accesscode|#|12);

 WYDE_AGIRequest(conf_authorize);
 if ("${agi_result}" != "1") {
 Set(DISCONNECT_REASON=Incorrect access code);
 WYDE_Playback(incorrect_accesscode);
 Hangup();
 }

 WYDE_Playback(accesscode_accepted);
 Return();
 }
}

Let’s consider the implemented logic in details. We should add the following two lines into
callflow.spec file:
[attributes]
dnis_authorizemethod = local
i.e. into this file we should add new section named attributes. In this section we can
define default values of the attributes for this call flow. There are different authorization
methods such as authorization via local database, authorization via RADIUS and others.
The authorization method can be defined independently for each DNIS via the attribute
dnis_authorizemethod. In our example we use authorization via the local database.

The script.ael file contains new contents (context) of sample_entry_handler
according to the requested call flow logic.
WYDE_Playback(welcome); // Play the prompt from a welcome.ul
file.

WYDE_Input(enter_accesscode|accesscode|#|12); // Enter
access code. Plays the prompt to enter access code and waits
for the entering of DTMF, the entering terminates when the
key '#' was pressed, the maximum length of entered string is
12 chars. Entered chars without '#' will be put into the
variable named accescode.

 Call Flow Development
 Programmer’s Guide
20

WYDE_AGIRequest(conf_authorize); // Make authorization. A
command WYDE_AGIRequest(conf_authorize) does authorization
request based on called_number and accesscode. If
authorization is successful then the variable agi_result will
be equal 1 and the appropriate values will be assigned to the
variables conf_number, role and others. Otherwise, if
authorization is unsuccessful, the agi_result will be equal
0.

if ("${agi_result}" != "1") // Check was authorization
successful or not.

Set(DISCONNECT_REASON=Incorrect access code); // If
authorization was unsuccessful set disconnect reason equal to
“Incorrect access code”.

WYDE_Playback(incorrect_accesscode); // Play the prompt
from a incorrect_accesscode.ul file (“incorrect access code”
message).

Hangup(); // If authorization was unsuccessful interrupt the
call.

WYDE_Playback(accesscode_accepted); // Play the prompt from
a accesscode_accepted.ul file (“access code accepted”
message).

Return(); // Return processing to call flows execution
environment (the call flow engine context).
Note. If it was not previously made, do not forget to place enter_accesscode.ul,
incorrect_accesscode.ul, accesscode_accepted.ul audio files into sounds subfolder of
SAMPLE folder of the call flow; welcome.ul file should be already in this folder after the
previous sample.

Because SAMPLE call flow has already been created in Sample 1 – Simple Call Flow
without Authorization now we should only update its attributes in a database; to do that the
following command should be executed:
wyde callflow-attr-update-db callflow SAMPLE

To send the signal on the WYDE bridge to the call flow engine to reload the scripts the
following command should be executed:
wyde callflow-reload

Now if you call to the number 8665089020 you will hear “welcome” message and after that
you will here “enter access code” message. After the access code is entered the
authorization will be made – if the access code is valid the call will be connected to the
conference either with host role or with participant role depending on access code; if the
access code is incorrect the call will be disconnected. For instance if two callers call to
8665089020 number, the first caller has entered host access code 1111 and the second
caller has entered participant access code 2222, you will see the calls conference screen

 Call Flow Development
 Programmer’s Guide
21

similar to shown on Figure 6. Calls report screen if three calls were made (the first with
wrong access code, the second with the host access code and the third with the participant
access code) is shown on Figure 7.

Figure 6: Calls Screen for the Conference – Sample 2 Call Flow (with Authorization)

Figure 7: Calls Report – Sample 2 Call Flow (with Authorization)

Click here to download the Sample 2. The archive files from SAMPLE2 folder should be
extracted into SAMPLE folder of your call flow.

Sample 3 – Call Flow with DTMF Processing
Let’s assume that we should add to the previous functionality (Sample 2 – Call Flow with
Authorization) DTMP keys processing. For processing of DTMP keys we can either use
predefined functions or write own functions. Let’s review the call flow scenario where we
should use three predefined functions:
x conference_mute on press *1, accessible only for host;
x conference_lock on press *2, accessible only for host;
x call_mute on press *3, accessible for both host and participant.

To implement the requested scenario the contents of callflow.spec and script.ael files
should be the following:

http://docs.wydevoice.com/2_2/downloads/CallFlowDev/SAMPLE2.zip

 Call Flow Development
 Programmer’s Guide
22

callflow.spec
[handlers]
entry_handler = sample_entry_handler

[attributes]
dnis_authorizemethod = local
conference_mute_dtmf = h
conference_mute_dtmf_binding = *1
conference_lock_dtmf = h
conference_lock_dtmf_binding = *2
call_mute_dtmf = hp
call_mute_dtmf_binding = *3

[dtmf_commands]
conference_mute_dtmf = conference_mute_switch
conference_lock_dtmf = conference_lock_switch
call_mute_dtmf = call_mute_switch

script.ael
context sample_entry_handler {
 s => {
 WYDE_Playback(welcome);
 WYDE_Input(enter_accesscode|accesscode|#|12);

 WYDE_AGIRequest(conf_authorize);
 if ("${agi_result}" != "1") {
 Set(DISCONNECT_REASON=Incorrect access code);
 WYDE_Playback(incorrect_accesscode);
 Hangup();
 }

 WYDE_Playback(accesscode_accepted);
 Return();
 }
}

Let’s consider the implemented logic in details. Note that to implement this scenario
script.ael file was not changed, so we will not describe it here. But we should make the
following changes in the callflow.spec file:
x We should add into attributes section of the callflow.spec file the following

attribute definitions:
conference_mute_dtmf = h
conference_mute_dtmf_binding = *1
conference_lock_dtmf = h
conference_lock_dtmf_binding = *2
call_mute_dtmf = hp

 Call Flow Development
 Programmer’s Guide
23

call_mute_dtmf_binding = *3
As you can see each DTMF handler is being defined by pair of call flow attributes – the
policy attribute and the DTMF binding attribute. The name of the policy attribute is
<function_name>_dtmf; this attribute defines accessibility of function for the role;
there could be one of the 3 possible policies: “hpl” (the option is available for hosts (h),
participants (p), and listeners (l) of the conference), “hp” (the option is available for hosts
(h) and participants (p) of the conference), and “h” (the option is available for conference
hosts (h) only). In our sample the policy attributes are conference_mute_dtmf
(available for hosts), conference_lock_dtmf (available for hosts), and
call_mute_dtmf (available for hosts and participants). The name of the binding
attribute is <function_name>_dtmf_binding; this attribute defines the sequence of
DTMF keys that should be pressed to invoke the function. In our sample the binding
attributes are conference_mute_dtmf_binding (*1 should be pressed),
conference_lock_dtmf_binding (*2 should be pressed), and
call_mute_dtmf_binding (*3 should be pressed).
You can see “Web Administration Interface – User Guide”, Chapter 3: Call Flows, for
additional information about call flow attributes.
x We should add new dtmf_commands section into callflow.spec file with the

following contents:
[dtmf_commands]
conference_mute_dtmf = conference_mute_switch
conference_lock_dtmf = conference_lock_switch
call_mute_dtmf = call_mute_switch
Here we describe the binding of DTMF keys commands and the functions that process
these DTMP keys.
These functions conference_mute_switch, call_mute_switch,
conference_lock_switch are predefined functions and they are defined in the
/usr/local/DNCA/lib/CallFlows/functions.ael file. The contents of these functions are
shown in Appendix A: Call Flow Library. You can also use this appendix as the set of
samples to build your own functions.

Some sound files are required to correct work of these functions; these files should be
placed in sounds subfolder of the SAMPLE call flow folder. That files contain
announcements about the changes in the state of the call or the conference.
Function File Name Prompt Message Content
conference_mute_switch line_mute.ul line_mute Muted
conference_mute_switch line_unmute.ul line_unmute Unmuted
conference_mute_switch gl_mute_open.ul gl_mute_open All callers are unmuted
conference_mute_switch gl_mute_question.ul gl_mute_question All callers are muted and they

can unmute themselves.
conference_mute_switch gl_mute_close.ul gl_mute_close All callers are muted
conference_lock_switch conf_secure.ul conf_secure The conference has been

locked.
conference_lock_switch conf_open.ul conf_open The conference has been

unlocked.
call_mute_switch line_mute.ul line_mute Muted
call_mute_switch line_unmute.ul line_unmute Unmuted

 Call Flow Development
 Programmer’s Guide
24

Because callflow.spec file has been changed now we should update the call flow attributes
in a database; to do that the following command should be executed:
wyde callflow-attr-update-db callflow SAMPLE

If you placed the requested sound files into sounds subfolder of the SAMPLE call flow
folder just now (when you implemented this sample), you should execute the following
command:
wyde callflow-reload
If these files already were in this folder it is not necessary to run this command (because no
sounds files were updated and script.ael file was not changed as well).

The updated SAMPLE call flow with new attributes is shown on Figure 8.

Figure 8: SAMPLE Call Flow with New Lock and Mute Attributes

Now if you call to the number 8665089020 and connect to the conference
x if you are the host you are able to mute the conference or mute your call or lock the

conference;
x if you are the participant you are able to mute/unmute your call only.
For instance if two callers (the host and the participant) call to 8665089020 number and the
host has locked the conference, has muted the conference and has mutes himself, you will
see the calls conference screen similar to shown on Figure 9.

 Call Flow Development
 Programmer’s Guide
25

Figure 9: Calls Screen for the Conference – Sample 3 Call Flow (with DTMF Processing)

Click here to download the Sample 3. The archive files from SAMPLE3 folder should be
extracted into SAMPLE folder of your call flow.

Sample 4 – Call Flow with Custom Handlers
Let’s assume that we should add to the previous functionality (Sample 3 – Call Flow with
DTMF Processing) the following logic:
x before the call joins to the conference the system should tell (pronounce) the number of

participants currently connected to this conference;
x on *4 pressed the system should play the current date and time, the function should be

accessible for both host and participant;
x on *5 pressed the conference recording should be started, if there was the recording in

the conference the file with the recording should be copied into /home/recordings folder
right after the recording is completed.

We can get the number of participants in the conference only after the call has been joined
to the conference. At the moment of the entry_handler execution the call is not joined
to the conference yet and because of that this information is not available in this handler.
Therefore it is necessary to define a welcome_handler that is being always executed
immediately after the call has been joined to the conference.

To play the current date and time we should create the custom call flow attributes pair – the
policy attribute and the DTMF binding attribute and write the handler for the DTMF keys
pressed. For instance the attributes names are call_saytime_dtmf and
call_saytime_dtmf_binding and the created handler name is
sample_saytime_handler.

To start and stop the recording we should have call flow attributes pair – the policy attribute
and the DTMF binding attribute and use the standard handler for the DTMF keys pressed.
In our sample the attributes names are recording_dtmf and
recording_dtmf_binding and the standard handler that should be used is
recording_switch. To copy the recorded file it is necessary to define a

http://docs.wydevoice.com/2_2/downloads/CallFlowDev/SAMPLE3.zip

 Call Flow Development
 Programmer’s Guide
26

recstop_handler that is being always executed immediately after the recording is
completed.

To implement the requested scenario the contents of callflow.spec and script.ael files
should be the following:

callflow.spec
[handlers]
entry_handler = sample_entry_handler
welcome_handler = sample_welcome_handler
recstop_handler = sample_recstop_handler

[custom_attributes]
call_saytime_dtmf = conference:role:Say time DTMF policy
call_saytime_dtmf_binding = dnis:string:Say time DTMF
binding

[attributes]
dnis_authorizemethod = local
conference_mute_dtmf = h
conference_mute_dtmf_binding = *1
conference_lock_dtmf = h
conference_lock_dtmf_binding = *2
call_mute_dtmf = hp
call_mute_dtmf_binding = *3
call_saytime_dtmf = hp
call_saytime_dtmf_binding = *4
recording_dtmf = h
recording_dtmf_binding = *5
recording_method = local_trusted

[dtmf_commands]
conference_mute_dtmf = conference_mute_switch
conference_lock_dtmf = conference_lock_switch
call_mute_dtmf = call_mute_switch
call_saytime_dtmf = sample_saytime_handler
recording_dtmf = recording_switch

 Call Flow Development
 Programmer’s Guide
27

script.ael
context sample_entry_handler {
 s => {
 WYDE_Playback(welcome);
 WYDE_Input(enter_accesscode|accesscode|#|12);

 WYDE_AGIRequest(conf_authorize);
 if ("${agi_result}" != "1") {
 Set(DISCONNECT_REASON=Incorrect access code);
 WYDE_Playback(incorrect_accesscode);
 Hangup();
 }

 WYDE_Playback(accesscode_accepted);
 Return();
 }
}

context sample_welcome_handler {
 s => {

WYDE_Playback(thereare&n:$[${WYDE_IVRStat(ses_count)}-
1]&callers|d);

 Return();
 }
}

context sample_saytime_handler {
 s => {
 SayUnixTime();

 Return();
 }
}

context sample_recstop_handler {
 s => {
 System(/bin/cp
${VARLIB_DIR}/recordings/${conf_subdir}/${conf_number}/recor
d/${conf_id}.${PREFERED_CODEC} /home/recordings);

 Return();
 }
}

 Call Flow Development
 Programmer’s Guide
28

Let’s consider the implemented logic in details.
x We should add the following line to the handlers section of the callflow.spec file:
welcome_handler = sample_welcome_handler
This line defines that sample_welcome_handler handler should be used as
welcome_handler of the call.
x We should also add the following line to the handlers section of the callflow.spec

file:
recstop_handler = sample_recstop_handler
This line defines that sample_recstop_handler handler should be used as
recstop_handler of the call.
x In addition to create the custom attributes we should add the custom_attributes

section into the callflow.spec file:
[custom_attributes]
call_saytime_dtmf = conference:role:Say time DTMF policy
call_saytime_dtmf_binding = dnis:string:Say time DTMF binding
x and we should add these attributes into attributes section:
call_saytime_dtmf = hp
call_saytime_dtmf_binding = *4
x and finally we should define the custom handler in dtmf_commands section:
call_saytime_dtmf = sample_saytime_handler
This line defines that sample_saytime_handler handler should be used when *4
(defined in call_saytime_dtmf_binding attribute) is pressed.
x To define the recording attributes we should add these attributes into attributes

section:
recording_dtmf = h
recording_dtmf_binding = *5
recording_method = local_trusted
x and finally we should define the standard handler in dtmf_commands section that

should be used to start and stop the conference recording:
recording_dtmf = recording_switch
This line defines that the standard recording_switch handler (see Chapter 3: Function
Reference, section: DTMF commands, command: recording_switch) should be used when
*5 (defined in recording_dtmf_binding attribute) is pressed. The recording file will
be saved in ${VARLIB_DIR}/recordings folder.

Also to the script.ael file we should add
x the contents (context) of sample_welcome_handler:
context sample_welcome_handler {
 s => {

WYDE_Playback(thereare&n:$[${WYDE_IVRStat(ses_count)}-
1]&callers|d);

 Return();
 }

 Call Flow Development
 Programmer’s Guide
29

}
x the contents (context) of sample_saytime_handler:
context sample_saytime_handler {
 s => {
 SayUnixTime();

 Return();
 }
}
x and the contents (context) of sample_recstop_handler:
 s => {
 System(/bin/cp
${VARLIB_DIR}/recordings/${conf_subdir}/${conf_number}/record
/${conf_id}.${PREFERED_CODEC} /home/recordings);

 Return();
 }
}

The WYDE_IVRStat(ses_count) function returns the number of the participants of
the conference. The WYDE_Playback function plays the files that are transferred to this
function as parameters separated via delimiter ‘&’. First of all this function plays the
message “there are” from the thereare.ul file; after that it plays the number of participants
of the current conference; and after that it plays message “participants in the conference”
from the callers.ul file.
Note. To play the numbers it is necessary to create the digits subfolder in the sounds folder;
this folder should contain the audio files that pronounce numbers: 0.ul 1.ul 2.ul 3.ul 4.ul
5.ul 6.ul 7.ul 8.ul 9.ul 10.ul 11.ul 12.ul 13.ul 14.ul 15.ul 16.ul 17.ul 18.ul 19.ul 20.ul 30.ul
40.ul 50.ul 60.ul 70.ul 80.ul 90.ul hundred.ul thousand.ul (i.e. “zero”, “one”, ..., “ten”,
“eleven”, “twelve”, ..., “twenty”, “thirty”, ..., “ninety”, “hundred”, “thousand”). See Table 1
for detail information.
The SayUnixTime() function is the standard Asterisk function that says a date and/or
time to the caller.
Note. To play date and time this function uses some of the sound files stored in
/var/lib/asterisk/sounds to construct a phrase saying the specified date and/or time in the
specified format.
The System function runs system copy command (/bin/cp) and copies the requested
recording file into /home/recordings folder.
Note. To play recording prompts the sound folder should contain the following sound files:
start_recording.ul (“this conference is now being recorded” message), stop_recording.ul
(“this conference is no longer being recorded” message), recording_dtmf.ul (“to record a
conference press” message), reconfirm.ul (“to begin recording this conference press 1, to
return – press *” message), rec_stop_confirm.ul (“press 1 to stop recording this conference,
to return – press *” message).

 Call Flow Development
 Programmer’s Guide
30

To update the SAMPLE call flow attributes in a database the following command should be
executed:
wyde callflow-attr-update-db callflow SAMPLE

To send the signal on the WYDE bridge to the call flow engine to reload the scripts the
following command should be executed:
wyde callflow-reload

The updated SAMPLE call flow with new attributes is shown on Figure 10.

Figure 10: SAMPLE Call Flow with New Custom Attributes

Now if you call to the number 8665089020 after you entered the access code and connected
to the conference you can hear “there are N participants in the conference” message (where
N – is the number of participants that were connected to the conference before you). When
you joined to the conference if you press *4 you will here the current date and time prompt.

Click here to download the Sample 4. The archive files from SAMPLE4 folder should be
extracted into SAMPLE folder of your call flow.

http://docs.wydevoice.com/2_2/downloads/CallFlowDev/SAMPLE4.zip

 Call Flow Development
 Programmer’s Guide
31

Chapter 3: Function Reference

Callback Handlers
Callbacks are using for the call flow customization. If a callback handler does not defined
in the call flow then the call flow engine are using a default handler.

For the usual call made to the bridge the following callback handler is being executed first:
x entry_handler
If the call was made with fast-join parameters the following callback handlers are being
executed first:
x fastjoin_handler
x conf_enter_handler
If the call is being initiated by the bridge (in case of dialout, call move, etc) the following
callback handler is being executed first:
x conf_enter_handler

After that the following callback handlers are being executed:
x waitmoderator_handler
x holdline_handler
x welcome_handler
x gotomp_handler
The handlers above are given in order of their execution.

The following callback handlers are being asynchronously executed when relevant events
occurred:
x recstop_handler
x terminate_handler
x hangup_handler

All these handlers are described in this section of the guide.

entry_handler
This handler is being called immediately when the call has been received by WYDE core.
At the moment of execution the session ID and the DID attributes are already assigned for
the call.

The handler must be defined by user to inform the system to what conference the call
should be joined, i.e. to define the conference number for the call.

If this handler is not written the default handler drops the call.

fastjoin_handler
This handler is being called instead of entry_handler if the access code and/or the role
are specified during the call.

 Call Flow Development
 Programmer’s Guide
32

The default handler tries to authorize the call using the specified access code and the role. If
the access code is wrong the call is being dropped. For call flows without authorization the
role parameter determines what role (i.e. Moderator, Participant, Listener) should be
assigned to the call (the default role is participant); for call flows with authorization the role
parameter is being ignored. If authorization is successful the call is being connected to the
conference and the subsequent handlers are being called.

conf_enter_handler
This handler is being called either after fastjoin_handler for some call flows or
instead of this handler if the call is being initiated by the bridge, i.e. if the dialout was made
or the call was transferred between the conferences. This handler is being used if the call
flow required non-standard authorization.

The default handler does standard authorization request based on called number and access
code.

waitmoderator_handler
This handler is being called after the call has been joined to the conference if the attribute
conference_start_how equals “moderator” and the call has Participant role and there
are no any other moderator calls joined to the conference.

The default handler holds the call in state MusicOnHold until the moderator connected to
the conference.

holdline_handler
This handler is being called after the call has been joined to the conference if condition for
waitmoderator_handler is not satisfied and the call has “on hold” state.

The default handler holds the call while its status is “on hold”.

welcome_handler
This handler is being always called after the call has been joined to the conference (after
waitmoderator_handler and holdline_handler).

The default handler does nothing.

gotomp_handler
This handler is being called before the call is being connected to the conference, i.e. before
the call is forwarded to the Media Processer (MP).

The default handler holds the call in the state MusicOnHold while there is only one call in
the conference and there is no activated recording or broadcasting. Before forwarding the
call to the MP it plays the prompt announceyourself or line_mute if the call is
muted.

 Call Flow Development
 Programmer’s Guide
33

recstop_handler
This handler is being called when the conference recording is completed (the recording has
been stopped). This handler is being used to get the access to the recorded file right after
the recording has been completed. For instance in this handler it is possible to copy the
recorded file to the remote server or another folder. The sample of the handler that copies
the recorded file into specified folder is shown in Sample 4 – Call Flow with Custom
Handlers.

The following variables can be used in this handler:
x ${VARLIB_DIR}/recordings/${conf_subdir}/${conf_number}/rec

ord/${conf_id}.${PREFERED_CODEC} – the full path to the recorded file;
x ${conf_id}.${PREFERED_CODEC} – the recorded file name, where

o ${conf_id} – the current conference identifier;
o ${PREFERED_CODEC} – the preferred (i.e. top-priority) codec in the

system (usually ul).

Note: if during the conference the recording was started and stopped multiple times each
new portion of the recording is being added to the end of the recording file, i.e. there is only
one recording file for the specific conference.

This handler is being executed asynchronously in separate thread and does not affect on the
conference call and possible subsequent recordings.

The default handler does nothing.

terminate_handler
This handler is being called when the WYDE core has sent the signal TERMINATE to the
call (i.e. when the call is being terminated by the bridge). The variable
DISCONNECT_REASON specifies a signal reason. Possible values:
x moderator_left – moderator left the conference the attribute

conference_stop_how equals “moderator”;
x moderator_not_up – the attribute conference_start_how equals

“moderator” and time of moderator waiting is exceeded;
x conference_maxcalls – the maximum number of calls in the conference is

exceeded;
x conference_maxduration – the maximum duration of conference is exceeded.

This handler is being called only if one of the reasons described above took place. Note this
event occurred only when the bridge terminates the call, not when the user terminates the
call. If there was abnormal call termination this handler is not being called. This handler
always called before hangup_handler call.

For instance this handler can be used to play specific message for the callers. In addition
this handler can be used to manage should the call be hanged up (the handler should call

 Call Flow Development
 Programmer’s Guide
34

Hangup() function for this purpose) or should not (the handler should call Return()
function for this purpose).

The default handler drops the call.

hangup_handler
This handler is being called when the call is hanged up either by the user or by the bridge.
If the call is being terminated by the bridge under one of the reasons described above for
terminate_handler) the terminate_handler is being called prior to this handler.

The default handler does nothing.

DTMF commands

call_participantsnumber
Plays number of participants in the conference.
Required prompts:
x you_are_the_only – Only one participant;
x hereare – There are;
x thereare2 – ... participants in a conference;

call_exit
Requests confirmation on a call end. Ends the call if it has been confirmed.
Required prompts:
x conf_exit_confirm – You entered the key to exit from the conference if this is

your intention please press 1, otherwise please press 2
x conf_exit – Thank you for using our service;
x goodbye – Goodbye;

call_instructions
Plays instructions about available DTMF functions.
Prompts:
x instructions_begin – The following conference commands are available...
x <function_name>_dtmf – The description of the function.

call_mute_switch
Mutes/un-mutes the call. If a Q&A mode is on then adds or removes the call to/from a
queue.
Prompts:
x line_mute – muted;
x line_unmute – un-muted;
x can_not_unmute – The conference host has muted the conference, this line can not

be un-muted;
x qa_req_submit_confirm – If you'd like to place yourself to the queue to ask a

 Call Flow Development
 Programmer’s Guide
35

question to the moderator press 1, otherwise press 2;
x qa_req_remove_confirm – If you'd like to remove yourself from the queue to ask

a question to the moderator press 1, otherwise press 2;
x qa_req_queued – Your request has been received;
x qa_req_removed – Your request has been removed from queue.

conference_mute_switch
The switch of conference mute and Q&A mode (opened/relaxed/strict/question).
Prompts:
x line_mute – muted;
x line_unmute – un-muted;
x gl_mute_open – All callers are un-muted;
x gl_mute_question – All callers are muted and they can un-mute themselves by

pressing *6;
x gl_mute_close – All callers are muted.

conference_lock_switch
Blocking the conference from new participants connecting.
Prompts:
x conf_secure – Secured conference;
x conf_open – Open conference.

conference_entryexittones_switch
The switch of entry/exit tones.
Prompts:
x en_off_ex_on – Entry chimes the off, exit chimes the on;
x en_on_ex_on – Entry chimes the on, exit chimes the on;
x en_off_ex_off – Entry chimes the off, exit chimes the off;
x en_on_ex_off – Entry chimes the on, exit chimes the off.

conference_qa_moderator
Manages Q&A sessions.
Prompts:
x qa_main_menu – To start Q&A session or to switch to the next question press 1 to

mute or unmute questioner press 2 to end session press 3.
x qa_talk_enabled – Q&A session started.
x qa_talk_disabled – Q&A session is over.
x qa_talk_notfound – There are no questions pending yet.
x qa_talk_enabled_announce – Now you can ask you question.
x qa_talk_disabled_announce – This line is now muted.
x qa_talk_muted – Questioner line now muted.
x qa_talk_unmuted – Questioner line now unmuted.
x qa_talk_next – Next questioner.

 Call Flow Development
 Programmer’s Guide
36

recording_switch
Starts/stops of the conference recording.
Prompts:
x reconfirm – To start conference recording press 1, to return to the conference press

*;
x rec_stop_confirm – To stop conference recording press 1, to return to the

conference press *;
x start_recording – This conference is being recorded;
x stop_recording – Recording has been stopped.

Dialplan commands and functions
In callback handlers as dialplan commands and functions you can use either standard
Asterisk functions or commands and functions provided by WYDE software.

For example you can make HTTP calls to external servers using CURL Asterisk function.
Also you can make requests via another protocols (not only HTTP) using different Asterisk
functions. In addition you can make your own AGI server or AGI script and make requests
via AGI protocol.
You can read Asterisk documentation for the detail list of Asterisk functions.

This section of the guide describes WYDE commands and functions that could be used in
callback handlers.

WYDE_Playback
Syntax:
WYDE_Playback(parameter[¶meter2...][|options])
Plays the prompt or the list of prompts. If the option “d” is specified then breaks playing on
DTMF and stores the DTMF key into DTMF_INPUT variable.

Parameters could specify a format qualifier. If the format qualifier is not specified then the
parameter will be interpreted as the file name from the sounds subdirectory.
Possible format qualifiers:
x n: – play the parameter as a decimal number;
x d: – play the parameter as a sequence of decimal digits;
x date: – play the parameter as a date.

WYDE_Input
Syntax:
WYDE_Input(prompt|variable[|ends[|maxlen[|timeout[|retries]]]
]);
Plays the prompt and waits for DTMF input. Input terminates if pressed one of key
specified in the ends. Entered string without the input terminator will be placed into the
variable.
Parameters:
x prompt – the prompt file name;

 Call Flow Development
 Programmer’s Guide
37

x variable – the name of the variable where the entered string will be placed;
x ends – the list of the input terminators separated by '^' (for example *^#);
x maxlen – the maximum length of input;
x timeout – the maximum time of waiting of input;
x retries – the maximum number of retry attempts.

WYDE_Choice
Syntax:
WYDE_Choice(prompt|variable|digits^digits^...[|invalid_input[
|retries[|timeout]]])
Plays the prompt and waits for the input of the on of the possible answers.
Parameters:
x prompt – the prompt file name;
x variable – the name of the variable where the entered choice will be placed;
x digits^digits^... – the list of possible choices of the answer, choice can have

one or more characters;
x invalid_input – the prompt which will be played if the impossible choice was

entered;
x retries – the maximum number of retries of input;
x timeout – the maximum time of waiting of input;

WYDE_AGIRequest
Syntax:
WYDE_AGIRequest(request[,parameters_list])
Executes the request to the FastAGI server.
Sets up the agi_result=1 if the request has been completed successfully, otherwise
agi_result=0.

WYDE_IVRStat
Syntax:
WYDE_IVRStat(variable)
A dialplan function. Returns the current states of the call or of the conference. This function
returns correct values only if the call has already been joined to the conference.
Parameters:
x inconference – equals 1 if the call already joined to the conference, else – 0;
x ses_count – the number of calls in the conference;
x regular_ses_count – the number of the regular calls in the conference (non

control);
x ivr_ses_count – the number of calls of the conference being at present on the IVR;
x mp_ses_count – the number of calls of the conference being at present on the MP;
x noaudio_count – the number of control calls in the conference;
x mp_noaudio_count – the number of control calls of conference being at present on

the MP;

 Call Flow Development
 Programmer’s Guide
38

x host_ses_count – the number of moderator's calls in the conference;
x participant_ses_count – the number of participant's calls in the conference;
x listener_ses_count – the number of listener's calls in the conference;
x moh_required – equals 1 if need to hold the call on MOH, otherwise – 0;
x secure – equals 1 if the conference is blocked for new participants connecting,

otherwise – 0;
x recording – equals 1 if recording is started, otherwise – 0;
x broadcast – equals 1 if broadcast is started, otherwise – 0;
x lecture_mode – returns the current value of lecture mode (False/Relaxed/Strict);
x control – equals 1 if the call is control call, otherwise – 0;
x role – returns a role of the call (Host/Participant/Listener);
x realtime – equals 1 if the RT protocol is activated for the call;
x mute – equals 1 if the call is muted;
x hold – equals 1 if the call is on hold;
x entry_tones – equals 1 if the entry tones are on for the conference, otherwise – 0;
x exit_tones – equals 1 if the exit tones are on for the conference, otherwise – 0;
x qa_request – equals 1 if the call is waits for the Q&A session;
x qa_mode – equals 1 if the Q&A session is activated for the call;
x operator_mode – equals 1 if the call waits for the operator or is connected to the

operator;
x operator_wait – equals 1 if the call waits for the operator;
x operator_talk – equals 1 if the call is connected to the operator.

WYDE_IVRConfStat
Syntax:
WYDE_IVRConfStat(variable)
A dialplan function. Returns the current states of the conference referenced by the variable
conf_number. The call can be either joined or does not joined to this conference.
Parameters:
x ses_count – the number of calls in the conference;
x regular_ses_count – the number of the regular calls in the conference (non

control);
x ivr_ses_count – the number of calls of conference being at present on the IVR;
x mp_ses_count – the number of calls of conference being at present on the MP;
x noaudio_count – the number of control calls in the conference;
x host_ses_count – the number of moderator's calls in the conference;
x participant_ses_count – the number of participant's calls in the conference;
x listener_ses_count – the number of listener's calls in the conference;
x secure – equals 1 if the conference is blocked for new participants connecting,

otherwise – 0;
x recording – equals 1 if the recording is started, otherwise – 0;
x broadcast – equals 1 if the broadcasting is started, otherwise – 0.

 Call Flow Development
 Programmer’s Guide
39

WYDE_IVRVar
Syntax:
WYDE_IVRConfStat(<variable>)
A dialplan function. Reads/writes the variables of the conference.

WYDE_IVRCheckRole
Syntax:
WYDE_IVRCheckRole()
Checks if the feature is accessible for the role.

 Call Flow Development
 Programmer’s Guide
40

Appendix A: Call Flow Library

/usr/local/DNCA/lib/CallFlows/functions.ael
//--
// Proc Events
//--

// assign new audiokey for the call
context call_associate {
 s => {
 Set(event_args=${FILTER(0123456789|${ses_event_param})});
 GoSub(call_set_bundle|s|1);
 Return();
 };
};

// assign new audiokey for the call
context call_set_bundle {
 s => {
 WYDE_IVRHelper(conf_command|set_bundle|${event_args});
 Return();
 };
};

// play announce to the call
context call_play_announce {
 s => {
 WYDE_Playback(${event_args}|d);
 Return();
 }
}

// play number of participants in the conference
context call_participantsnumber {
 s => {
 Set(count=${WYDE_IVRStat(regular_ses_count)});
 if ("${count}" = "1") {
 WYDE_Playback(you_are_the_only|d);
 } else {
 WYDE_Playback(thereare&n:${count}&thereare2|d);
 };
 Return();
 };
}

// play number of participants in the conference (more simple variant)
context call_participantsnumber_simple {
 s => {
 WYDE_Playback(thereare&n:${WYDE_IVRStat(regular_ses_count)}&thereare2|d);
 Return();
 }
}

// exit from the conference
context call_exit {
 s => {
 WYDE_IVRHelper(musiconhold_start);
 WYDE_Choice(conf_exit_confirm|choice|1^2|invalid_input|1);
 if("${choice}" = "1") {
 WYDE_Playback(conf_exit&goodbye|d);
 Hangup();
 };
 Return();
 };
};

// play instructions about accessible DTMF commands

 Call Flow Development
 Programmer’s Guide
41

context call_instructions {
 s => {
 WYDE_IVRHelper(play_instructions);
 Return();
 };
}

// mute/unmute group of participants in the conference
context conference_mute_switch {
 s => {
 if ("${WYDE_IVRStat(qa_mode)}" != "1") {
 WYDE_IVRHelper(conf_command|mute_group|switch|Participant);
 if("${mutegroup_moderator_enabled}" = "y") {
 Set(NO_ANNOUNCE=1);
 WYDE_IVRHelper(conf_command|mute_group|switch|Host);
 Set(NO_ANNOUNCE=);
 }
 } else {
 WYDE_Playback(unaccessible_command|d);
 }
 Return();
 }
}

// mute/unmute call
context call_mute_switch {
 s => {
 if("${WYDE_IVRStat(role)}" != "Host") {
 if("${WYDE_IVRStat(qa_mode)}" = "1") {
 SetIfVar(accept_key=qa_accept_key:1);
 SetIfVar(cancel_key=qa_cancel_key:2);

 if("${WYDE_IVRStat(qa_request)}" = "0") {

 Set(ARRAY(input_prompt,command)=qa_req_submit_confirm\,start);
 } else {
 if("${WYDE_IVRStat(qa_talk)}" = "1") {
 WYDE_IVRHelper(conf_command|mute|switch|self);
 Return();
 }

 Set(ARRAY(input_prompt,command)=qa_req_remove_confirm\,stop);
 }

 WYDE_Choice(${input_prompt}|choice|${accept_key}^${cancel_key}|invalid_input|3);
 if("${choice}" = "${accept_key}") {
 WYDE_IVRHelper(conf_command|qa_request|${command});
 }
 }
 else if("${WYDE_IVRStat(lecture_mode)}" != "Strict") {
 WYDE_IVRHelper(conf_command|mute|switch|self);
 }
 else {
 WYDE_Playback(can_not_unmute|d);
 }
 } else {
 WYDE_IVRHelper(conf_command|mute|switch|self);
 }
 Return();
 };
}

// mute/unmute call (simple variant)
context call_mute {
 s => {
 WYDE_IVRHelper(conf_command|mute|${event_args});
 Return();
 };
}

 Call Flow Development
 Programmer’s Guide
42

// hold line
context call_hold {
 s => {
 WYDE_IVRHelper(conf_command|hold|${event_args});
 if("${WYDE_IVRStat(hold)}" = "1") {
 WYDE_IVRHelper(musiconhold_start);
 }
 Return();
 };
}

// Q&A request
context call_qa_request {
 s => {
 WYDE_IVRHelper(conf_command|qa_request|${event_args});
 Return();
 };
}

// wait while moderator come to the conference
context call_wait_moderator {
 s => {
 WYDE_IVRHelper(conf_command|wait_moderator|${event_args});
 Return();
 }
}

// lock/unlock conference
context conference_lock_switch {
 s => {
 WYDE_IVRHelper(conf_command|secure|secure_switch);
 Return();
 };
};

// switch the entry/exit tones status
context conference_entryexittones_switch {
 s => {
 WYDE_IVRHelper(conf_command|entryexit_tones);
 Return();
 };
};

// set jobcode for the conference
context conference_jobcode {
 s => {
 WYDE_Input(enter_jobcode|value|#|16);
 if("${value}" != "") {
 WYDE_Playback(you_entered&d:${value}|d);
 WYDE_IVRHelper(conf_command|conf_set|job_code|${value});
 }
 Return();
 }
}

// start/stop recording
context recording_switch {
 s => {
 // Recording
 WYDE_IVRHelper(musiconhold_start);

 if("${WYDE_IVRStat(recording)}" != "1") {
 Set(prompt=reconfirm|helper=start|recording_originator=1);
 } else {
 Set(prompt=rec_stop_confirm|helper=stop);
 }

 if("${recording_auth}" = "1" ||
 "${recording_method}" = "remote_trusted" || "${recording_method}" =
"local_trusted") {
 SetIfVar(accept_key=recording_accept_key:1);

 Call Flow Development
 Programmer’s Guide
43

 SetIfVar(cancel_key=recording_cancel_key:2);

 WYDE_Choice(${prompt}|choice|${accept_key}^${cancel_key}|invalid_input|3);
 if("${choice}" = "${cancel_key}" || "${choice}" = "") {
 Return();
 };
 } else {
 Set(INPUT_ENDER=|count=0|recording_passcode=);
 while(${count} < 3 && "${recording_passcode}" = "") {
 WYDE_Input(subscriber_pin_prompt|recording_passcode|#|10);
 NoOp(${recording_passcode});
 count=${count}+1;
 }

 if ("${recording_passcode}" = "") {
 Return();
 }

 GoSub(recording_auth|s|1);
 if("${recording_auth}" != "1") {
 Return();
 }
 }

 WYDE_IVRHelper(conf_command|recording|${helper}|${accesscode}|${recording_passcode})
;
 Set(inprogress=1);
 while(${inprogress} > 0) {
 WYDE_IVRHelper(wait_event);
 GoSub(core_proc_events|s|1);
 }
 Return();
 }

 auth_error => {
 if("${recording_auth}" = "-1") {
 WYDE_Playback(subscriber_pin_incorrect|d);
 Return();
 } else if ("${recording_auth}" = "-2") {
 WYDE_Playback(service-unavail|d);
 Return();
 }
 }
}

// initiate outgoing call
context dialout {
 s => {
 WYDE_AGIRequest(get_dialout_accesscode);
 if ("${dialout_accesscode}" = "") {
 WYDE_IVRHelper(conf_command|ses_get|accesscode);
 Set(dialout_accesscode=${VARIABLE_VALUE});
 }

 WYDE_IVRHelper(dialout|${phone_number}|60|${conf_number}|${called_number}|core_conf_
enter_participant^s^1|${dialout_accesscode}|Participant|${dialout_mode}tAC);
 if("${DIALSTATUS}" != "JOINPEER" && "${DIALSTATUS}" != "DISCONNECT" &&
"${DIALSTATUS}" != "ASYNC") {
 WYDE_Playback(party_did_not_answer);
 }
 Return();
 }
}

// set new role for the call
context call_setrole {
 s => {
 Set(accesscode=${event_args});
 WYDE_AGIRequest(conf_authorize);

 Call Flow Development
 Programmer’s Guide
44

 if("${agi_result}" == "1") {
 WYDE_IVRHelper(set_role|${role});
 }
 Return();
 };
}

// set custom name
context call_set_customname {
 s => {
 if(${WYDE_IVRStat(inconference)} = 1) {
 WYDE_IVRHelper(conf_command|ses_set|customname|${event_args});
 }
 else {
 WYDE_IVRHelper(ses_command|ses_set|customname|${event_args});
 }
 Return();
 };
}

// set evvironment variables
context call_setvars {
 s => {
 Set(${event_args});
 Return();
 }
}

// call pause
context call_pause {
 s => {
 Set(inprogress=1);
 while(${inprogress} > 0) {
 WYDE_IVRHelper(wait_event);
 GoSub(core_proc_events|s|1);
 }
 Return();
 }
}

// manage Q&A session
context conference_qa_moderator {
 s => {
 if("${conference_qa_dtmf}" != "") {
 WYDE_Playback(sil&sil&sil&sil|d);
 if("${DTMF_INPUT}" = "") {
 WYDE_Choice(qa_main_menu|choice|1^2^3^4^5^*|invalid_input|3);
 } else {
 Set(choice=${DTMF_INPUT});
 }

 if ("${choice}" = "1") {
 WYDE_IVRHelper(conf_command|qa_mode|start);
 } else if("${choice}" = "2") {
 WYDE_IVRHelper(conf_command|qa_talk|ivr);
 } else if("${choice}" = "3") {
 WYDE_IVRHelper(conf_command|qa_mode|stop);
 } else if("${choice}" = "4") {
 WYDE_IVRHelper(conf_command|qa_mute);
 } else if("${choice}" = "5") {
 WYDE_IVRHelper(conf_command|qa_mode|clear);
 };
 }
 Return();
 }
}

 Call Flow Development
 Programmer’s Guide
45

Appendix B: Support Resources
If you have difficulty with this guide and any of the procedures listed herein, please contact
us using the following support resources.

Support Documentation
In addition to this Guide, you may obtain other WYDE Voice documentation from WYDE
Voice or from the WYDE Voice documentation Web site: http://docs.wydevoice.com/.

Web Support
Our support website is available 24 hours a day, 7 days a week, and 365 days a year at
http://www.wydevoice.com. You may download patches, support documentation and other
technical support information.

Telephone Support
For difficulties with any procedures described in this Guide, please contact us at 866-508-
9020 during our normal phone support hours of 7:00 am to 6:00 pm Pacific Standard Time
(PST). An engineer will respond to your inquiry within 24 hours.

Email Support
You may also email us your questions at support@wydevoice.com. We will respond to
your question within 24 hours.

http://docs.wydevoice.com/
http://www.wydevoice.com/
mailto:support@wydevoice.com

	 Tables List
	Chapter 1: Introduction
	Assumed Skills
	Asterisk Extension Language
	Assumptions
	Definitions

	 Chapter 2: Samples of Call Flows
	Sample 1 – Simple Call Flow without Authorization
	Sample 2 – Call Flow with Authorization
	Sample 3 – Call Flow with DTMF Processing
	Sample 4 – Call Flow with Custom Handlers

	 Chapter 3: Function Reference
	Callback Handlers
	entry_handler
	fastjoin_handler
	conf_enter_handler
	waitmoderator_handler
	holdline_handler
	welcome_handler
	gotomp_handler
	recstop_handler
	terminate_handler
	hangup_handler

	DTMF commands
	call_participantsnumber
	call_exit
	call_instructions
	call_mute_switch
	conference_mute_switch
	conference_lock_switch
	conference_entryexittones_switch
	conference_qa_moderator
	recording_switch

	Dialplan commands and functions
	WYDE_Playback
	WYDE_Input
	WYDE_Choice
	WYDE_AGIRequest
	WYDE_IVRStat
	WYDE_IVRConfStat
	WYDE_IVRVar
	WYDE_IVRCheckRole

	 Appendix A: Call Flow Library
	

	 Appendix B: Support Resources
	Support Documentation
	Web Support
	Telephone Support
	Email Support

