

WYDE Billing Guide

(version 2.4)

 WYDE Billing Guide 2

Disclaimer
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN
THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL
ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL
RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE
ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET
THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY
THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR WYDE VOICE REPRESENTATIVE
FOR A COPY.

IN NO EVENT SHALL WYDE VOICE OR ITS SUPPLIERS BE LIABLE FOR ANY
INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES,
INCLUDING, WITHOUT LIMITATION LOST PROFITS OR LOSS OR DAMAGE TO
DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN
IF WYDE OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Copyright
Except where expressly stated otherwise, the Product is protected by copyright and other
laws respecting proprietary rights. Unauthorized reproduction, transfer, and or use can be a
criminal, as well as civil, offense under the applicable law.

WYDE Voice and the WYDE Voice logo are registered trademarks of WYDE Voice LLC
in the United States of America and other jurisdictions. Unless otherwise provided in this
Documentation, marks identified with “R” / ®, “TM” / ™ and “SM” are registered marks;
trademarks are the property of their respective owners.

For the most current versions of documentation, go to the WYDE support Web site:
http://docs.wydevoice.com/

July 26, 2011

http://docs.wydevoice.com/

 WYDE Billing Guide 3

Symbols and Notations in this Manual

The following notations and symbols can be found in this manual.

Denotes any item that requires special attention or care. Damage to the
equipment or the operator may result from failure to take note of the noted
instructions

Figure Denotes any illustration

Table Denotes any table

Text Denotes any text output

Folder/File Denotes any folders (paths) or files names

commands Denotes any commands, attributes and parameters

 WYDE Billing Guide 4

Table of Contents
Symbols and Notations in this Manual... 3
Table of Contents ... 4

Tables List .. 6
Figures List ... 7

Chapter 1: Introduction... 8
Section 1.1: Billing Overview .. 8
Section 1.2: Assumed Skills ... 8
Section 1.3: Architecture Overview ... 8
Section 1.4: Integration Adapters ... 8
Section 1.5: Internal Reporting... 9

Chapter 2: Billing ... 10
Section 2.1: CDR Format ... 10
Section 2.2: Standard Billing Adapters and Rules ... 12
Section 2.3: Billing Integration .. 13
Section 2.4: Custom Billing Adapters and Rules ... 14
Section 2.5: WYDE Commands to Manage Billing Adapters and Rules 16

Add a Billing Adapter .. 16
Delete a Billing Adapter ... 17
Modify a Billing Adapter ... 18
View Billing Adapters .. 18
Add a Billing Rule.. 19
Delete a Billing Rule .. 20
Modify a Billing Rule... 20
View Billing Rules ... 21
Billing Configurations Reloading... 22

Chapter 3: Samples of Billing Adapters ... 23
Section 3.1: Sample of Calls Billing Adapter to Text File... 23

Sample of WYDE Bridge Configuration for Calls Text File Billing Adapter 23
Section 3.2: Sample of Conferences Billing Adapter to Text File 24

Sample of WYDE Bridge Configuration for Conferences Text File Billing Adapter . 25
Section 3.3: Sample of Billing Adapter to Windows PostgreSQL Database 25

PostgreSQL Database Access Configuration Sample .. 26
Sample of WYDE Bridge Configuration for PostgreSQL Billing Adapter 26

Section 3.4: Sample of Billing Adapter to Windows Microsoft SQL Database 27
Microsoft SQL Server Installation and Configuration Sample 27
Microsoft SQL Database Access Configuration Sample ... 28
Sample of WYDE Bridge Configuration for Microsoft SQL Billing Adapter............. 28

Chapter 4: wyde Billing Command Reference .. 29
billing-adapter-add (Add Billing Adapter) .. 29
billing-adapter-del (Delete Billing Adapter) .. 29
billing-adapter-set (Set Billing Adapter Properties)..................................... 29
billing-adapter-show (Show Billing Adapters).. 29
billing-reload (Reload Billing Configuration) .. 29
billing-rule-add (Add Billing Rule)... 29

 WYDE Billing Guide 5

billing-rule-del (Delete Billing Rule) ... 30
billing-rule-set (Set Billing Rule) .. 30
billing-rule-show (Show Billing Rules) .. 30

Appendix A: Billing Adapters Code Samples.. 31
Billing Adapter Base Class (Adapter.pm) .. 31
Sample of Calls Billing Adapter for Text File (TEXTCSV).. 32
Sample of Conferences Billing Adapter for Text File (TEXTCONF) 33
Sample of Billing Adapter for Windows PostgreSQL Database (WINPGSQL) 34
Sample of Billing Adapter for Microsoft SQL Database (MSSQL) 35

Appendix B: CDR Data Structures... 36
CDR.log File Data Structure .. 36
Local dnca_calls Database calls Table Data Structure and Samples................................ 37
Local dnca_calls Database conferencedr Table Data Structure and Samples 39

Appendix C: Definitions, Acronyms and Abbreviations.. 40
Appendix D: Support Resources .. 43

Support Documentation.. 43
Web Support ... 43
Telephone Support.. 43
Email Support ... 43

 WYDE Billing Guide 6

Tables List
Table 1: Input CDR Data Format for Billing Adapters .. 10

 WYDE Billing Guide 7

Figures List
Figure 1: WYDE Bridge Standard and Custom Billing Adapters Architecture Samples 13
Figure 2: wyde help billing-adapter-add and wyde billing-adapter-add Commands Output
Sample .. 17
Figure 3: wyde help billing-adapter-set and wyde billing-adapter-set Commands Output
Sample .. 18
Figure 4: wyde billing-adapter-show Command Output Sample... 19
Figure 5: wyde help billing-rule-add and wyde billing-rule-add Commands Output Sample
.. 20
Figure 6: wyde help billing-rule-set and wyde billing-rule-set Commands Output Sample 21
Figure 7: wyde billing-rule-show Command Output Sample... 21

 WYDE Billing Guide 8

Chapter 1: Introduction
This is the Billing guide for the WYDE conferencing bridges (like SB-HD100, SB-
HD1000, and SB-HD10000). Within this guide you will learn how to integrate WYDE
bridge calls information into your billing system, i.e. how to transmit and store the calls
information in your specific data storage.

Section 1.1: Billing Overview
For billing purposes the WYDE bridge software can store and transmit CDRs (Call Detail
Records). Please note, that the WYDE bridge software is not responsible for financial
billing; it neither tracks credit cards nor sends invoices to the clients. It only provides CDR
data and it is up to you how to use them in your financial billing.

Section 1.2: Assumed Skills
This billing guide assumes you have a working knowledge of the following technologies
and skills:
x PC usage
x System administration
x Linux/CentOS basics
x VOIP basics
x TCP/IP networking
x Command Line Administration Interface - User Guide (recommended)
x Web Administration Interface – User Guide (recommended)

Section 1.3: Architecture Overview
The WYDE architecture is made up of both hardware as well as software services that work
together to provide the best carrier-class, wideband conferencing available.

WYDE services is not only turnkey software solution, it is the component that can be easily
integrated into other products. The WYDE Bridge can be controlled either using web
services or using real-time interface. Web services send requests to the bridge and receive
information about status of the bridge. The real time interface makes call to the bridge
using special client, perform SIP call to send and receive commands and exchange
information about the conferences.

Section 1.4: Integration Adapters
WYDE can be integrated into an enterprise infrastructure through the set of adapters. There
are three points of integration:
x Billing service – For billing purposes the WYDE bridge software can store and

transmit CDRs (Call Detail Records), the CDR storage is the storage location for the
individual call records. You can store this information into SQL database or use another
data storage.

x Authentication service – This allows the WYDE software to integrate into the
enterprise authentication systems. This could be a SQL database, RADIUS, LDAP, or
other.

 WYDE Billing Guide 9

x Call/Conference management – This is the ability to manage conference calls,
exposed through the Web API for integration with enterprise web sites.

This document is devoted to billing adapters only. It explains how to develop your own
billing adapters to store calls and conferences information into your database or other data
storage. If you need additional documentation regarding to “WYDE Command Line
Administration Interface” or “WYDE Web Administration Interface” please download it
from the WYDE Voice documentation Web site as noted in Appendix D: Support
Resources, Support Documentation section.

Section 1.5: Internal Reporting
Conference Bridge itself provides comprehensive reports allowing Administrator to verify
what calls in what conferences took place. These reports are available through the standard
Web Administration interface that comes with the bridge. They include following reports:
1. Calls report
9 gives Administrator a possibility to review individual CDRs

2. Conference Report
9 allows to browse conferences (that took place in the past). Additionally this report

lets to playback conference recording (if it was recorded) and plot a Gantt chart of
the calls belonging to this conference.

3. Disconnect report
9 allows to see calls distribution by different disconnect reasons. This is very helpful

for troubleshooting.
4. DNIS report
9 allows to see calls distribution by different called numbers.

5. Load charts
9 shows actual port utilization over time for the desired interval.

To see detailed information about these reports please open chapter “Web Report
Management” in document “Web Administration Interface – User Guide”. You can
download this guide from the WYDE Voice documentation Web site as noted in Appendix
D: Support Resources, Support Documentation section.

 WYDE Billing Guide 10

Chapter 2: Billing
As it was previously mentioned WYDE bridge software allows you to store, process and
transmit data that could be used for billing purposes. To do so you could either use standard
billing adapters provided with the WYDE bridge software or write you own billing
adapters.

WYDE bridge billing is being formed from CDR information generated by MF, Billing
Adapters and Billing Rules.

WYDE bridge MF service writes CDR information about completed calls into internal
journal; such CDRs journal is being created for each billing adapter. That journal could be
accessed by the billing adapter to catch and store CDR information.

In terms of WYDE bridge software the Billing Adapter is the component (function)
responsible for storing billing, i.e. CDR information. Billing adapter processes information
from the internal CDRs journal created by MF service; in this journal MF keeps
information about completed calls; billing adapter receives this information, transforms it
into required format and stores it in required data carrier. More formally, "billing" is the
information about completed conferences and calls also called CDR.

In terms of WYDE bridge software the Billing Rule is the set of billing adapters that are
being used to store CDR information by specific call flow or DNIS. The billing rules are
being used for the conference billing information storing. Billing rules determines the
specific billing adapters that are used to save CDR information, this includes comma-
separated billing adapters that should be used in the specific billing rule, i.e.
{[file][,][localdb][,][adapter:<name>]}. The billing rule could be defined either on call
flow level or on DNIS level.

Section 2.1: CDR Format
The input format for billing adapters, i.e. the CDR information about the completed calls
that comes from MF to the journal used by billing adapter is shown in Table 1. This
information goes in chronological order of when the call was completed, i.e. when CDR
record was created for the call. The provided table contains names of the fields, description
of the fields, and CDR data samples.

Table 1: Input CDR Data Format for Billing Adapters
Field Description Data Samples
access_code Access code used 505052
addr_from Full address FROM, i.e. full qualified SIP

URI of caller’s address
<sip:4024684432@192.168.1.5>

addr_to Full address TO, i.e. full qualified SIP URI
of callee’s address

"8665080020" <sip:8665080020
@192.168.1.5>

audio_key Audio key assigned to this call or empty 690
bridge Bridge name WYDE5
call_created Date and time when the call was created

(started)
2010-11-09 17:39:07+02

 WYDE Billing Guide 11

Field Description Data Samples
call_dropped Date and time when the call was dropped

(ended)
2010-11-09 17:55:12+02

call_duration Duration of the call in seconds 965
call_id Call identifier Integer call identifier
called_number Called number, i.e. the number to which the

caller had called
8665080020

callflow Call flow name (for instance, CONF,
PLAYBACK, OPERATOR, SPECTEL, etc.)

SPECTEL

calling_number Incoming calling number, i.e. the number
from which called the caller or empty

4024684432

conf_flag Conference flag – 2 value of this flag
determines that this call is the last call in the
conference and the conference was
completed when this call ended; otherwise
this flag is empty

2

conf_id Conference identifier Integer conference identifier
conf_number Conference number 889900
connection_type Connection type, i.e. call direction (In for

inbound calls, Out for outbound calls)
In

custom_call_type Custom call type (for instance,
CONTROLLED, PSTN, RECORDING,
VoIP)

PSTN

custom_name Custom caller name either set from the web
or IVR (PIN) or empty

John Jr.

disconnect_cause Standard Q.931 (ISDN) Disconnect Cause
Codes; the cause codes list can be used to
decode the disconnect reasons in ISDN
messages (PBX or PSTN
interfaces); Q.931 messages used to
communicate over IP, Tenor CDR records
and Tenor/Radius messages (for instance,
16 – Normal Call Clearing, 18 – No User
Responding, 34 – No Circuit/Channel
Available, 38 – Network Out-of-Order,
127 – Interworking, Unspecified, etc.)1

16

disconnect_reason The reason why the call was disconnected
(for instance, Normal, Dropped by
host, Incorrect access code,
Moved to other conference.
NOANSWER, CONGESTION, etc.)

Normal

disconnect_who Who disconnected the call (for instance,
USER, BRIDGE)

USER

job_code Active billing (business) code 123
node Node name AST1
role Role in the conference (Host,

Participant, Listener)
Host

1 You can find additional information regarding to Disconnect Cause Codes, including the complete list of the
codes using the following URLs:
x http://www.quintum.com/support/xplatform/network/Q931_Disconnect_Cause_Code_List.pdf
x http://www.quintum.com/support/xplatform/ivr_acct/webhelp/Disconnect_Cause_Codes.htm

http://www.quintum.com/support/xplatform/network/Q931_Disconnect_Cause_Code_List.pdf
http://www.quintum.com/support/xplatform/ivr_acct/webhelp/Disconnect_Cause_Codes.htm

 WYDE Billing Guide 12

Field Description Data Samples
subscriber_name First and/or last names of the subscriber or

empty
John

Additionally this information is being stored in local SQL database and in CSV text file by
standard billing adapters provided with the WYDE bridge software. See next section of the
guide for details.

Section 2.2: Standard Billing Adapters and Rules
The following two predefined billing adapters are included and supported by standard
WYDE bridge software installation:
x localdb – the adapter that saves CDR information into dnca_calls local database;
x file – the adapter that saves CDR information into /usr/local/DNCA/log/CDR.log file.
Note that both these billing adapters are standard adapters and automatically supported by
the WYDE bridge software. They should not be added in the list of billing adapters
maintained by billing-adapter-*** commands; these commands are managing
custom billing adapters only.

Let’s review each of these two standard billing adapters.

The standard billing adapter named localdb saves CDR information into local SQL
database (PostgreSQL).
9 dnca_calls database (the database name is defined using configuration parameter:

billing_localdb_name), by default the database contains CDR data for the
last 180 days (this period can be redefined using configuration parameter:
billing_localdb_storing_period); if you are going to use these billing
data, they should be transferred to your external database within this time period.

Additionally this localdb billing adapter is configured using the following system
settings configuration parameters:
� billing_localdb_host – denotes the server (its IP address) where the

local billing database is being placed;
� billing_localdb_user – denotes the name of the user that is used to

access the local billing database;
� billing_localdb_passwd – denotes the password of the user that is used

to access the local billing database
� billing_localdb_driver – denotes the billing database driver, the

default value is pgsql – PostgreSQL, for other possible drivers (for example
MySQL or Oracle) please contact WYDE Voice technical support.

Local SQL database contains CDR information about the completed calls in the
calls table. This table contains the data in chronological order of when the call was
completed, i.e. when CDR record was created for the call. The table fields,
description of the fields, and stored data samples are listed in Appendix B: CDR
Data Structures, Local dnca_calls Database calls Table Data Structure and Samples.

 WYDE Billing Guide 13

The calls table described above contains data about completed calls. The conf_flag
flag of the calls table shows if the CDR records represent the last call in the
conference. Once the last call was completed in the conference, the conference data
record is being stored into conferencedr table of local SQL database based on calls
table data. The records in this table represent the completed conferences. This table
fields, description of the fields, and stored data samples are listed in Appendix B:
CDR Data Structures, Local dnca_calls Database conferencedr Table Data
Structure and Samples.

The standard billing adapter named file saves CDR information into local CSV file.
9 /usr/local/DNCA/log/CDR.log, this file contains information for today’s CDRs

only; in addition the history is being saved for the last 10 days in the same folder in
the files from CDR.log.1 (yesterday) till CDR.log.10 (10 days ago).
This file is comma-separated file; the information that is being stored in this file is
listed in Appendix B: CDR Data Structures, CDR.log File Data Structure.

Of course, if you would like to store CDR information in your own database you can create
your custom billing adapter that will be responsible for saving CDR data as it is required
for your organization. This approach will be described in next sections of this guide.

Figure 1: WYDE Bridge Standard and Custom Billing Adapters Architecture Samples

There is one predefined standard billing rule with name default that is included and
supported by standard WYDE bridge software installation. As it was previously mentioned
the billing rule includes comma-separated list of billing adapters that should be used in the
specific billing rule. This default billing rule is defied as file,localdb – that means that these
two standard billing adapters are being consecutively used in this rule.

The billing rule name should be selected in dnis_billingrule (Billing rule) call flow
attribute value either on call flow or on DNIS level.

Section 2.3: Billing Integration
CDRs can be delivered to the external billing system in one of the following ways:
1. External billing system pulls new CDRs from the internal database regularly in

predefined intervals. In this case you use data created by standard localdb billing
adapter in dnca_calls database. You can write your own routine that in given time

 WYDE Billing Guide 14

interval will periodically take new CDR data from the WYDE bridge billing database
and place them into your own database that you use for your billing procedures.

2. Using custom Billing Adapter bridge can push CDRs to the external billing system in
the real-time. Usual push scenarios are:

i. The Billing Adapter inserts CDRs into external database.
ii. The Billing Adapter creates CSV files and makes them available on the FTP; the

remote system takes them from FTP itself.
iii. The Billing Adapter sends CDRs to the external system using proprietary protocol

(TCP based, UDP based, SOAP, etc).
3. CDR information could be placed to your FTP using the special script; this script

usually are being run daily, it takes CDR records for the last day, creates the file with
these data in the requested format and places this file to the specified FTP.
9 Please contact WYDE Voice technical support if you need to place your CDR

information to your FTP.

Section 2.4: Custom Billing Adapters and Rules
In terms of WYDE bridge software the Billing Adapter is the component (function)
responsible for storing billing, i.e. CDR information. Billing adapter processes information
from the journal created by MF service; in this CDRs journal MF keeps information about
completed calls; billing adapter receives this information, transforms it into required format
and stores it in required data carrier.

In addition to standard localdb and file billing adapters described in previous sections of
this guide you can create your own billing adapters that will process your CDR information
on the fly in the real-time mode. Such custom billing adapters could store CDR information
in your own database; they are responsible for saving CDR data as it is required for your
organization. The input format for billing adapters, i.e. the information that comes from MF
to the billing adapter was previously described in Section 2.1: CDR Format.

The possibility to create the custom billing adapter is provided by the WYDE software.
Custom billing adapters are routines, i.e. drivers, written in Perl that perform saving of
CDR information using specific protocols and parameters used to run there routines
(drivers).

The billing Adapter base class has been created as shown in Appendix A: Billing Adapters
Code Samples, Billing Adapter Base Class (Adapter.pm). It has the following methods that
can be overridden in your custom billing adapter for the purpose of storing CDRs as
required for your organization:
x new – the constructor of the class, that is used to parse billing adapter input parameters

and for initialization purposes;
x pollingInterval – the interval in seconds of how often CDR information is being

requested and processed by the adapter (default: 1 second);
x onCDR – is being called when CDR queue is not empty, the array of CDR hashes is

being formed and this method is being called with this CDRs array transferred as its
parameter, these CDR hashes are being processed by the custom billing adapter in this

 WYDE Billing Guide 15

onCDR method; this method should return the integer actual number of CDRs that were
successfully stored and processed by the adapter;

x limitCDR – the maximum size of the array of CDRs that is being transferred to the
onCDR method as its parameter (default: 100 elements);

x requireMDR – the Boolean flag that shows should or should not the adapter process
information when the last CDR in the conference has been created, i.e. the conference
was dropped (MDR is information that determines if the call is the last in the conference
and the conference was completed when this call ended):
o if requireMDR returns 0 (default), that means that no MDR information should be

processed and onMDR method should not be called;
o if requireMDR returns 1, that means that MDR information should be processed

and stored by your custom billing adapter and onMDR method should be called to
process such information;

x onMDR – is being called if requireMDR returns 1 and when the last CDR is being
created for the conference, i.e. it is being called when the conference is over; the method
as its parameters receives the array of all conference CDRs hashes that belong to one
completed conference only; this method should return 1 if the conference CDRs were
successfully stored and processed by the adapter or 0 if the CDRs processing was failed.

The custom billing adapter is the class inherited from this Adapter base class where any of
the methods above could be overridden in order to maintain the logic required by your
organization. When you write your custom billing adapter you should inherit it from the
base Adapter class:
@ISA = ("Billing::Adapter");
and override the methods that you are going to use to store CDR as required for your
organization.
Additionally your custom billing adapter should contain the method:
x factory – creates and returns the instance of your billing adapter class; the source

code of this method could be the following:
sub factory {
 return new Billing::Adapter::<your_billing_adapter_name>(@_);
}

Note 1. It is up to you to decide if your organization wants to save CDRs using onCDR
method, or onMDR method, or both.
Note 2. If onCDR or onMDR methods reported an error – the framework considers that
these CDRs are not handled and tries to call and process them during the next call of this
method.
Note 3. Because CDR and MDR information is being kept in internal billing journal, if
your billing adapter was not working certain amount of time the billing information is not
being lost; when your billing adapter starts working again all accumulated billing
information will be transferred to your billing adapter in chronological order once it is
available.

These billing adapter drivers are placed in the /usr/local/DNCA/lib/Billing/Adapter folder
that should contain the files <Adapter Driver>.pm; for example if you have custom billing

 WYDE Billing Guide 16

adapter tfcc, with the driver TFCC this folder on your bridge should contain the file
TFCC.pm – the billing adapter driver that can be used.

Billing rules are being used for the conference billing information storing. Billing rules
determines the specific billing adapters that are used to save CDR information, this includes
comma-separated billing adapters that should be used in the specific billing rule, i.e.
{[file][,][localdb][,][adapter:<name>]}:

o file – denotes that CDR information should be stored into
/usr/local/DNCA/log/CDR.log file;

o localdb – denotes that CDR information should be stored into dnca_calls local
database;
9 if your custom billing adapter overrides onMDR method, the billing rule that

determines the usage of such adapter must contain localdb clause, i.e. it should
contain localdb,adapter:<your adapter with onMDR method>

9 otherwise this localdb clause is optional;
o adapter:<name> – denotes custom billing adapter name that should be used to store

CDR information.

As it was previously mentioned the billing rule name used for your custom billing adapter
should be selected in dnis_billingrule (Billing rule) call flow attribute value either
on call flow or on DNIS level.

Section 2.5: WYDE Commands to Manage Billing Adapters and Rules
Billing adapters and rules can be managed using wyde command with different options that
will be listed and described below. The command line interface is the powerful tool to
administer your billing adapters and billing rules.

Add a Billing Adapter
Before you add new billing adapter, you should create the <Adapter Driver>.pm driver file
in the /usr/local/DNCA/lib/Billing/Adapter folder for this adapter driver as it was described
above.

To add new billing adapter registration using the command line interface you should use
the wyde command line utility with the billing-adapter-add option. The syntax is as
follows:
wyde billing-adapter-add <arguments>
Each of the arguments is followed by a space and a value. In billing-adapter-add you can
specify the following arguments:
x name <value> – The name of the billing adapter that should be added. This name

should be unique, i.e. there should no be any other billing adapter with the same name
on the bridge.

x description <value> – The optional description of the billing adapter that
should be added.

x driver <value> – The driver name for the billing adapter that should be added.
The file <Adapter Driver Name>.pm should exist in the
/usr/local/DNCA/lib/Billing/Adapter folder.

 WYDE Billing Guide 17

x parameters <value> – The list of parameters for the billing adapter that should
be added.

Arguments name, driver and parameters are required. The arguments can be
transferred to this command in any order.

Let’s assume that we have created the file TFCC.pm in the folder
/usr/local/DNCA/lib/Billing/Adapter for new billing adapter tfcc, parameters that should be
used are 192.168.1.45:9000. To add this billing adapter to the bridge you should use the
command:
wyde billing-adapter-add name tfcc driver TFCC

description "Billing using TFCC - sample"
parameters 192.168.1.45:9000

If the command is successful, the system will not return any errors or messages; it will just
return you back to the command prompt (#). The sample of the billing-adapter-add
command output and the help on this command is shown on Figure 2.

Figure 2: wyde help billing-adapter-add and wyde billing-adapter-add Commands Output Sample

Delete a Billing Adapter
To delete a billing adapter using the wyde command line utility you should use billing-
adapter-del option. The syntax is as follows:
wyde billing-adapter-del name <billing adapter name>
where
x <billing adapter name> – the name of the billing adapter you wish to delete.
Note that you can delete billing adapters that are not in use only, i.e. there should no be any
billing rules that refer to this billing adapter. If the billing adapter is used by any billing rule
you will receive the error message: “<billing adapter name>: Billing adapter is in use and
can not be removed.” and the deletion will be cancelled.

For example to delete billing adapter tfcc (created in previous sample) you should run the
command:
wyde billing-adapter-del name tfcc

 WYDE Billing Guide 18

If deletion is successful, you will be returned to the command line with no additional
prompts.

Modify a Billing Adapter
To modify billing adapter properties, such as description, driver and parameters, using the
command line interface you should use the wyde command line utility with the billing-
adapter-set option. The syntax is as follows:
wyde billing-adapter-set <arguments>
Each of the arguments is followed by a space and a value. In billing-adapter-set you can
specify the following arguments:
x name <value> – The name of the billing adapter that should be changed.
x description <value> – New description of the billing adapter that should be set.
x driver <value> – New driver name for the billing adapter that should be set.
x parameters <value> – New list of parameters for the billing adapter that should

be set.
The argument name is required; you should specify other arguments only if you would like
to change them. The arguments can be transferred to this command in any order.

For example if you would like to change tfcc billing adapter and set its parameters equal to
“192.168.1.46:9000”, you should run the following command (the transferred command
arguments are shown in italic):
wyde billing-adapter-set name tfcc

parameters 192.168.1.46:9000

If the command is successful, the system will not return any errors or messages; it will just
return you back to the command prompt (#). The sample of the billing-adapter-set
command output and the help on this command is shown on Figure 3.

Figure 3: wyde help billing-adapter-set and wyde billing-adapter-set Commands Output Sample

View Billing Adapters
To show a list of all billing adapters in the system using the command line, you should use
the wyde command line utility with the billing-adapter-show option. The syntax is as
follows:

 WYDE Billing Guide 19

wyde billing-adapter-show

This command will output a list of the all existed billing adapters on the system, similar to
shown on Figure 4. As you can see, the wyde billing-adapter-show command shows the
billing adapters that have been created in the system as well as their basic properties: billing
adapter name, driver, parameters and description.

Figure 4: wyde billing-adapter-show Command Output Sample

Add a Billing Rule
To create new billing rule for the billing adapter using the command line interface you
should use the wyde command line utility with the billing-rule-add option. The syntax is as
follows:
wyde billing-rule-add <arguments>
Each of the arguments is followed by a space and a value. In billing-rule-add you can
specify the following arguments:
x name <value> – The name of the billing rule that should be added.
x description <value> – The description of the billing rule that should be added.
x rule <value> – The billing rule content that should be added, comma-separated

values: {[file][,][localdb][,][adapter:<name>]}:
o file – denotes that CDR information should be stored into

/usr/local/DNCA/log/CDR.log file;
o localdb – denotes that CDR information should be stored into dnca_calls

local database;
o adapter:<name> – denotes custom billing adapter name that should be

used to store CDR information.
Arguments name and rule are required. The arguments can be transferred to this
command in any order.

For example if you would like to create the billing rule custom that defines that CDR
records should be stored into file, local dnca_calls database and using tfcc billing adapter
with description “Store CDRs in file, local database and via TFCC” you should run the
following command (new billing rule properties are shown in italic):
wyde billing-rule-add name custom

description "Store CDRs in file, local database and via TFCC"
rule "file,localdb,adapter:tfcc"

Note that to set the description that contains spaces and parameters you should use double
quotes (").

If the command is successful, the system will not return any errors or messages; it will just
return you back to the command prompt (#). The sample of the billing-rule-add command
output and the help on this command is shown on Figure 5.

 WYDE Billing Guide 20

Figure 5: wyde help billing-rule-add and wyde billing-rule-add Commands Output Sample

Delete a Billing Rule
If you wish to delete the specific billing rule, you can use the wyde command line utility
with billing-rule-del option. The syntax is as follows:
wyde billing-rule-del name <billing rule name>
where
x <billing rule name> – The name of the billing rule that should deleted. This

argument is required.
Note that you can delete only billing rules that are not in use. If the rule is used by any call
flow and/or DNIS you will receive the error: “<billing rule name>: Billing rule is in use
and can not be removed.” and the deletion will be cancelled.

For example to delete the billing rule custom you should run the command:
wyde billing-rule-del name custom

If deletion is successful, you will be returned to the command line with no additional
prompts.

Modify a Billing Rule
To modify billing rule properties, such as description and rule content, using the command
line interface you should use the wyde command line utility with the billing-rule-set option.
The syntax is as follows:
wyde billing-rule-set <arguments>
Each of the arguments is followed by a space and a value. In billing-rule-set you can
specify the following arguments:
x name <value> – The name of the billing rule that should be updated.
x description <value> – New description of the billing rule that should be set.
x rule <value> – New billing rule content that should be set, comma-separated

values: {[file][,][localdb][,][adapter:<name>]}:
o file – denotes that CDR information should be stored into

/usr/local/DNCA/log/CDR.log file;

 WYDE Billing Guide 21

o localdb – denotes that CDR information should be stored into dnca_calls
local database;

o adapter:<name> – denotes custom billing adapter name that should be
used to store CDR information.

The argument name is required; you should specify arguments description and rule
only if you would like to change them. The arguments can be transferred to this command
in any order.

For example if you would like to change default billing rule and set its description equal to
“Default billing rule - sample”, you should run the following command (the transferred
command arguments are shown in italic):
wyde billing-rule-set name default

description "Default billing rule - sample"

If the command is successful, the system will not return any errors or messages; it will just
return you back to the command prompt (#). The sample of the billing-rule-set command
output and the help on this command is shown on Figure 6.

Figure 6: wyde help billing-rule-set and wyde billing-rule-set Commands Output Sample

View Billing Rules
To show a list of all billing rules in the system using the command line, you should use the
wyde command line utility with the billing-rule-show option. The syntax is as follows:
wyde billing-rule-show

This command will output a list of the all existed billing rules on the system, similar to
shown on Figure 7. As you can see, the wyde billing-rule-show command shows the billing
rules that have been created in the system as well as their basic properties: billing rule
name, rule content, and description.

Figure 7: wyde billing-rule-show Command Output Sample

 WYDE Billing Guide 22

Billing Configurations Reloading
You should reload your WYDE bridge billing configuration if you created new or updated
existing billing adapter driver (*.pm file) as well as if you added or updated billing adapter
or rule definition using wyde commands with options: billing-adapter-add, billing-adapter-
set, billing-rule-add, billing-rule-set.

To do so you should run the wyde command line utility with the billing-reload option. The
syntax is as follows:
wyde billing-reload

If billing configurations reloading is successful, you will be returned to the command line
with no additional prompts.

 WYDE Billing Guide 23

Chapter 3: Samples of Billing Adapters
As it was previously told, you can write your own billing adapters when it is necessary.
Custom billing adapters are routines, i.e. drivers, written in Perl that perform saving of
CDR information using specific protocols.

Each billing adapter could have any of the following methods:
x new – that performs class initialization, for instance database initialization, socket

initialization, etc.;
x pollingInterval – that determines the interval in seconds of how often CDR

information is being requested and processed by the adapter;
x onCDR – that is being called when there are non-processed completed calls and where

you can implement data saving that is necessary for your organization, for example
saving information into your database, writing information to socket, etc.;

x limitCDR – that determines the maximum size of the CDRs array that is being
transferred to the onCDR method as its parameter;

x requireMDR – that determines should (if returns value 1) or should not (if returns
value 0) the adapter process information when the conference is completed by onMDR
method;

x onMDR – is being called if requireMDR returns 1 and when the last CDR is being
created for the conference, i.e. when there are non-processed completed conferences;
here you can also implement data saving that is necessary for your organization, but this
method always processes the all calls that belong to the single conference only.

Section 3.1: Sample of Calls Billing Adapter to Text File
Let’s review the following scenario:
x we need to create and configure the billing adapter that will write all CDR information

(CDR fields and their values) into specified text file.
Let’s assume that the full file name is /root/billing.csv and it is being transferred for the
billing adapter as its parameter.

Click here to see sample of the billing adapter TEXTCSV source code that we developed to
implement this request.

Sample of WYDE Bridge Configuration for Calls Text File Billing Adapter
When design of TEXTCSV.pm file is completed you should copy this file into
/usr/local/DNCA/lib/Billing/Adapter folder and then you should run the wyde command
line utility with the billing-reload option:
wyde billing-reload
This command also should be run if you made any changes in your billing adapter file.

Next you can add billing adapter and billing rule using the following commands:
wyde billing-adapter-add name textcsv driver TEXTCSV

description "Billing to Calls Text File"
parameters "/root/billing.csv"

 WYDE Billing Guide 24

wyde billing-rule-add name customfile description "Store CDRs
in file, local database and in custom text file" rule
"file,localdb,adapter:textcsv"

The billing rule customfile defines that the CDR data should be stored into CDR file, local
database and using textcsv adapter into specified file.

Also note that after you add the billing adapter you also should run the wyde command line
utility with the billing-reload option:
wyde billing-reload

After that you should change dnis_billingrule (Billing rule) call flow attribute
either on call flow level or on DNIS level and set it equal customfile.

As soon as this has been done when the calls are ended their CDR information will be
stored not only in traditional locations (CDR file and local database), but also in your
custom text file. Here we provide few samples of your stored data:
subscriber_name=,conf_flag=0,calling_number=101,custom_call_type=PSTN,disconnect_reason=Norm

al,callflow=SPECTEL,node=AST1,conf_number=666011,call_dropped=2011-07-19
12:03:10,call_created=2011-07-19
11:53:10,job_code=,called_number=8665080012,custom_name=,audio_key=0,bridge=WYDE,call_
id=16777555,call_duration=600,addr_to="8665080012"
<sip:8665080012@192.168.1.31>,access_code=6613,conf_id=134217884,disconnect_cause=16,c
onnection_type=In,role=Listener,disconnect_who=USER,addr_from=<sip:101@127.0.0.1>

subscriber_name=,conf_flag=2,calling_number=100,custom_call_type=PSTN,disconnect_reason=Norm
al,callflow=SPECTEL,node=AST1,conf_number=666011,call_dropped=2011-07-19
12:03:11,call_created=2011-07-19
11:53:11,job_code=,called_number=8665080012,custom_name=,audio_key=0,bridge=WYDE,call_
id=16777556,call_duration=600,addr_to="8665080012"
<sip:8665080012@192.168.1.31>,access_code=6611,conf_id=134217884,disconnect_cause=16,c
onnection_type=In,role=Host,disconnect_who=USER,addr_from=<sip:100@127.0.0.1>

Section 3.2: Sample of Conferences Billing Adapter to Text File
Let’s review the following scenario:
x we need to create and configure the billing adapter that for all completed conferences

will write the conference number, the conference identifier, the information when the
conference was started, when it was ended, and how many calls were in the conference;

x this information should be written into specified comma-delimited text file.
Let’s assume that the full file name is /root/billconf.csv and it is being transferred for the
billing adapter as its parameter.

Click here to see sample of the billing adapter TEXTCONF source code that we developed
to implement this request.

Because the data need to be saved for entire conference, the sub requireMDR should be
overridden and it should return 1; the specific data saving mechanism is implemented in
sub onMDR method that is being called when the conference is over; as its parameter it
receives all conference CDRs data that are being processed and stored according to your
needs (see sample in this guide appendix).

 WYDE Billing Guide 25

Sample of WYDE Bridge Configuration for Conferences Text File Billing
Adapter
When design of TEXTCONF.pm file is completed you should copy this file into
/usr/local/DNCA/lib/Billing/Adapter folder and then you should run the wyde command
line utility with the billing-reload option:
wyde billing-reload
This command also should be run if you made any changes in your billing adapter file.

Next you can add billing adapter and billing rule using the following commands:
wyde billing-adapter-add name textconf driver TEXTCONF

description "Billing to Conferences Text File"
parameters "/root/billconf.csv"

wyde billing-rule-add name customfileconf description "Store
CDRs in file, local database and in custom conf text
file" rule "file,localdb,adapter:textconf"

The billing rule customfileconf defines that the CDR data should be stored into CDR file,
local database and using textconf adapter into specified file.

Also note that after you add the billing adapter you also should run the wyde command line
utility with the billing-reload option:
wyde billing-reload

After that you should change dnis_billingrule (Billing rule) call flow attribute
either on call flow level or on DNIS level and set it equal customfileconf.

As soon as this has been done when the conferences are ended, their MDR information will
be stored not only in traditional locations (CDR file and local database), but also in your
custom text file. Here we provide few samples of your stored data:
666001,134217893,2011-07-19 18:59:34+03,2011-07-19 19:02:34+03,3
666011,134217894,2011-07-19 18:59:34+03,2011-07-19 19:09:34+03,2
666011,134217897,2011-07-19 19:11:34+03,2011-07-19 19:21:34+03,2
666001,134217896,2011-07-19 19:11:34+03,2011-07-19 19:21:34+03,3
666011,134217899,2011-07-19 19:23:34+03,2011-07-19 19:33:34+03,2
666001,134217898,2011-07-19 19:23:35+03,2011-07-19 19:33:34+03,3

Section 3.3: Sample of Billing Adapter to Windows PostgreSQL Database
Let’s review the following scenario:
x we need to create and configure the billing adapter that will write all CDR information

(CDR fields and their values) into Windows PostgreSQL dnca_calls database CDRs
table with the following structure:
CREATE TABLE "CDRs"
(
 "CdrID" serial NOT NULL,
 "CdrDATA" text,
 "CreateDate" timestamp without time zone DEFAULT now(),
 CONSTRAINT "PrimaryKey" PRIMARY KEY ("CdrID")
)
WITH (
 OIDS=FALSE
);

 WYDE Billing Guide 26

In our sample PostgreSQL Windows computer IP address is 192.168.1.99, database
user name is WydeBillingAdapter, user password is 123.

Click here to see sample of the billing adapter WINPGSQL source code that we developed
to implement this request.

PostgreSQL Database Access Configuration Sample
Database specific connection operator is defined in sub new method:
$self->{db} = DBI->connect("dbi:Pg:dbname=$database;host=$host", $user,

$password) || proc_error("Connect: ".DBI::errstr);
This operator defines database format, server address, database name, user name and
password.
Specific data saving mechanism is implemented in sub onCDR method; it includes data
formatting according to your needs and insert statement design and execution (see sample
in this guide appendix).

Sample of WYDE Bridge Configuration for PostgreSQL Billing Adapter
When design of WINPGSQL.pm file is completed you should copy this file into
/usr/local/DNCA/lib/Billing/Adapter folder and then you should run the wyde command
line utility with the billing-reload option:
wyde billing-reload
This command also should be run if you made any changes in your billing adapter file.

Next you can add billing adapter and billing rule using the following commands:
wyde billing-adapter-add name winpgsql driver WINPGSQL

description "Billing to PostgreSQL on Windows"
parameters 192.168.1.99

wyde billing-rule-add name winpg description "Store CDRs in
file, local database and in Windows PostgreSQL database"
rule "file,localdb,adapter:winpgsql"

The billing rule winpg defines that the CDR data should be stored into CDR file, local
database and using winpgsql adapter into Windows PostgreSQL database.

Also note that after you add the billing adapter you also should run the wyde command line
utility with the billing-reload option:
wyde billing-reload

After that you should change dnis_billingrule (Billing rule) call flow attribute
either on call flow level or on DNIS level and set it equal winpg.

As soon as this has been made when the calls are ended their CDR information will be
stored not only in traditional locations (CDR file and local database), but also in your
PostgreSQL database. Here we provide few samples of your stored data:

 WYDE Billing Guide 27

"subscriber_name=,conf_flag=0,calling_number=101,custom_call_type=PSTN,disconnect_reason=Nor
mal,callflow=SPECTEL,node=AST1,conf_number=666001,call_dropped=2011-07-19
16:26:07,call_created=2011-07-19
16:16:07,job_code=,called_number=8665080012,custom_name=,audio_key=0,bridge=WYDE,call_
id=16777567,call_duration=600,addr_to="8665080012"
<sip:8665080012@192.168.1.31>,access_code=6602,conf_id=134217890,disconnect_cause=16,c
onnection_type=In,role=Participant,disconnect_who=USER,addr_from=<sip:101@127.0.0.1>"

"subscriber_name=,conf_flag=2,calling_number=102,custom_call_type=PSTN,disconnect_reason=Nor
mal,callflow=SPECTEL,node=AST1,conf_number=666001,call_dropped=2011-07-19
16:26:07,call_created=2011-07-19
16:16:07,job_code=,called_number=8665080012,custom_name=,audio_key=0,bridge=WYDE,call_
id=16777568,call_duration=600,addr_to="8665080012"
<sip:8665080012@192.168.1.31>,access_code=6602,conf_id=134217890,disconnect_cause=16,c
onnection_type=In,role=Participant,disconnect_who=USER,addr_from=<sip:102@127.0.0.1>"

Section 3.4: Sample of Billing Adapter to Windows Microsoft SQL
Database
Let’s assume that instead of Windows PostgreSQL database the same data (CDR fields and
their values) should be stored into Windows Microsoft SQL database:
x database name is dnca_calls, table name is CDRs, the table has the following structure:

CREATE TABLE [dbo].[CDRs](
 [CdrID] [int] IDENTITY(1,1) NOT NULL,
 [CdrData] [text] NULL,
 [CreateDate] [datetime] NOT NULL,
 CONSTRAINT [PK_CDRs] PRIMARY KEY CLUSTERED
 (
 [CdrID] ASC
)
)
In our sample Microsoft SQL Server Windows computer IP address is 192.168.1.9,
database user name is WydeBillingAdapter, user password is 123.

Microsoft SQL Server Installation and Configuration Sample
Note that to access to Microsoft SQL databases from Linux CentOS computer you should
install additional packages on your WYDE bridge computer:
x FreeTDS package (http://www.freetds.org/) should be installed:

./configure --prefix=/opt/freetds
make
make install

x DBD::Sybase package (http://search.cpan.org/~mewp/DBD-Sybase-1.10/) should be
installed:
export SYBASE=/opt/freetds
perl Makefile.PL
make
make install

In addition you should edit /opt/freetds/etc/freetds.conf configuration file and write down
the information about your SQL server:
[MSSQL]
 host = 192.168.1.9
 port = 1433
 tds version = 8.0

http://www.freetds.org/
http://search.cpan.org/%7Emewp/DBD-Sybase-1.10/

 WYDE Billing Guide 28

Here MSSQL is named instance of your Microsoft SQL server computer with given IP
address, port and version. You can use this name in your code to access to your SQL server.

Click here to see sample of the billing adapter MSSQL source code that we developed to
implement this request.

Microsoft SQL Database Access Configuration Sample
Database specific connection operator is defined in sub new method:
$self->{db} = DBI->connect("dbi:Sybase:server=$host:database=$database",

$user, $password) || die("Connect: ".DBI::errstr."\n");
This operator defines database format (Sybase keyword should be used for Microsoft SQL
Server), server address, database name, user name and password.
Specific data saving mechanism is implemented in sub onCDR method; it includes data
formatting according to your needs and insert statement design and execution (see sample
in this guide appendix). This method is almost the same as it was used for previous billing
adapter written for PostgreSQL; the only difference could be in SQL statement format.

Sample of WYDE Bridge Configuration for Microsoft SQL Billing Adapter
When design of MSSQL.pm file is completed you should copy this file into
/usr/local/DNCA/lib/Billing/Adapter folder and then you should run the wyde command
line utility with the billing-reload option to actualize these changes as it was previously
described.

Next you can add billing adapter and billing rule using the following commands:
wyde billing-adapter-add name mssql driver MSSQL

description "Billing to Microsoft SQL on Windows"
parameters MSSQL

wyde billing-rule-add name winms description "Store CDRs in
file, local database and in Windows Microsoft SQL
database" rule "file,localdb,adapter:mssql"

The billing rule winms defines that the CDR data should be stored into CDR file, local
database and using mssql adapter into Windows Microsoft SQL database.

Also note that after you add the billing adapter you also should run the wyde command line
utility with the billing-reload option:
wyde billing-reload

After that you should change dnis_billingrule (Billing rule) call flow attribute
either on call flow level or on DNIS level and set it equal winms.

As soon as this has been made when the calls are ended their CDR information will be
stored not only in traditional locations (CDR file and local database), but also in your
Microsoft SQL database. These stored data will be exactly the same with the data saved
into PostgreSQL database.

 WYDE Billing Guide 29

Chapter 4: wyde Billing Command Reference

billing-adapter-add (Add Billing Adapter)
Syntax:

wyde billing-adapter-add arguments
Arguments:

name <value> – The name of the billing adapter that should be added (*);
description <value> – The description of the billing adapter that should be

added;
driver <value> – The driver name for the billing adapter that should be added (*);
parameters <value> – The list of parameters for the billing adapter that should

be added (*).

billing-adapter-del (Delete Billing Adapter)
Syntax:

wyde billing-adapter-del arguments
Arguments:

name <value> – The name of the billing adapter that should deleted (*).

billing-adapter-set (Set Billing Adapter Properties)
Syntax:

wyde billing-adapter-set arguments
Arguments:

name <value> – The name of the billing adapter that should be updated (*);
description <value> – New description of the billing adapter that should be set;
driver <value> – New driver name for the billing adapter that should be set;
parameters <value> – New list of parameters for the billing adapter that should

be set.

billing-adapter-show (Show Billing Adapters)
Syntax:

wyde billing-adapter-show

billing-reload (Reload Billing Configuration)
Syntax:

wyde billing-reload

billing-rule-add (Add Billing Rule)
Syntax:

wyde billing-rule-add arguments
Arguments:

name <value> – The name of the billing rule that should be added (*);
description <value> – The description of the billing rule that should be added;

 WYDE Billing Guide 30

rule <value> – The billing rule content that should be added (*), comma-separated
values: {[file][,][localdb][,][adapter:<name>]}:
o file – denotes that CDR information should be stored into

/usr/local/DNCA/log/CDR.log file;
o localdb – denotes that CDR information should be stored into dnca_calls

local database;
o adapter:<name> – denotes custom billing adapter name that should be used

to store CDR information.

billing-rule-del (Delete Billing Rule)
Syntax:

wyde billing-rule-del arguments
Arguments:

name <value> – The name of the billing rule that should deleted (*).

billing-rule-set (Set Billing Rule)
Syntax:

wyde billing-rule-set arguments
Arguments:

name <value> – The name of the billing rule that should be updated (*);
description <value> – New description of the billing rule that should be set;
rule <value> – New billing rule content that should be set, comma-separated

values: {[file][,][localdb][,][adapter:<name>]}:
o file – denotes that CDR information should be stored into

/usr/local/DNCA/log/CDR.log file;
o localdb – denotes that CDR information should be stored into dnca_calls

local database;
o adapter:<name> – denotes custom billing adapter name that should be used

to store CDR information.

billing-rule-show (Show Billing Rules)
Syntax:

wyde billing-rule-show

 WYDE Billing Guide 31

Appendix A: Billing Adapters Code Samples

Billing Adapter Base Class (Adapter.pm)
package Billing::Adapter;

sub new {
 my $self = {};
 my $class = shift;

 return bless($self, $class);
}

sub pollingInterval {
 return 1; #1 sec
}

sub limitCDR {
 return 100;
}

sub onCDR {
 my ($self, $cdrs) = @_;
 return scalar(@$cdrs);
}

sub requireMDR {
 return 0;
}

sub onMDR {
 return 0;
}

 WYDE Billing Guide 32

Sample of Calls Billing Adapter for Text File (TEXTCSV)
package Billing::Adapter::TEXTCSV;

use IO::File;
use Misc::Logger;
use Billing::Adapter;
@ISA = ("Billing::Adapter");

sub factory {
 return new Billing::Adapter::TEXTCSV(@_);
}

sub new {
 my $self = {};
 my $class = shift;
 my $object = bless($self, $class);
 my $parameters = shift;

 $logger->info("Create adapter TEXTCSV : parameters=$parameters");

 $self->{FILE} = new IO::File;
 $self->{FILE}->open(">> $parameters");

 return $object;
}

sub onCDR {
 my $self = shift;
 my $cdrs = shift;
 my $sent = 0;

 foreach my $cdr (@$cdrs) {
 my @data_array = ();
 foreach my $k (keys(%$cdr)) {
 push(@data_array, $k."=".$cdr->{$k});
 }
 my $data_str = join(',', @data_array);

 $self->{FILE}->syswrite($data_str."\n");
 $sent++;
 }

 return $sent;
}

 WYDE Billing Guide 33

Sample of Conferences Billing Adapter for Text File (TEXTCONF)
package Billing::Adapter::TEXTCONF;

use IO::File;
use Misc::Logger;
use Billing::Adapter;
@ISA = ("Billing::Adapter");

sub factory {
 return new Billing::Adapter::TEXTCONF(@_);
}

sub new {
 my $self = {};
 my $class = shift;
 my $object = bless($self, $class);
 my $parameters = shift;

 $logger->info("Create adapter TEXTCONF : parameters=$parameters");

 $self->{FILE} = new IO::File;
 $self->{FILE}->open(">> $parameters");

 return $object;
}

sub requireMDR {
 return 1;
}

sub onMDR {
 my $self = shift;
 my $cdrs = shift;
 my $data_str;
 my $conf_created;
 my $conf_dropped;
 my $calls = 0;
 my $isFirst = 1;

 foreach my $cdr (@$cdrs) {
 if ($isFirst==1) {
 $data_str = "$cdr->{conf_number},$cdr->{conf_id},";
 $conf_created = $cdr->{call_created};
 $conf_dropped = $cdr->{call_dropped};
 $isFirst = 0;
 }

 if ($conf_created lt $cdr->{call_created}) {
 $conf_created = $cdr->{call_created};
 }
 if ($conf_dropped gt $cdr->{call_dropped}) {
 $conf_dropped = $cdr->{call_dropped};
 }
 $calls++;
 }
 $data_str .= "$conf_created,$conf_dropped,$calls";

 $self->{FILE}->syswrite($data_str."\n");
 return 1;
}

 WYDE Billing Guide 34

Sample of Billing Adapter for Windows PostgreSQL Database
(WINPGSQL)
package Billing::Adapter::WINPGSQL;

use Misc::Logger;
use Billing::Adapter;
use DBI;
@ISA = ("Billing::Adapter");

sub factory {
 return new Billing::Adapter::WINPGSQL(@_);
}

sub new {
 my $self = {};
 my $class = shift;
 my $object = bless($self, $class);
 my $database = "dnca_calls";
 my $user = "WydeBillingAdapter";
 my $password = "123";
 my $host = shift;

 $logger->info("Create adapter WINPGSQL : parameters=$host");

 $self->{db} = DBI->connect("dbi:Pg:dbname=$database;host=$host", $user, $password)
 || proc_error("Connect: ".DBI::errstr);

 return $object;
}

sub onCDR {
 my $self = shift;
 my $cdrs = shift;
 my $sent = 0;
 my $query;
 my $sth;

 foreach my $cdr (@$cdrs) {
 $query = "INSERT INTO \"CDRs\" (\"CdrDATA\") VALUES (?);";
 $sth = $self->{db}->prepare($query);

 my @data_array = ();
 foreach my $k (keys(%$cdr)) {
 push(@data_array, $k."=".$cdr->{$k});
 }
 my $data_str = join(',', @data_array);

 $sth->execute($data_str) || proc_error(DBI::errstr."\nquery: $query\ndata: $data_str\n");
 $sent++;
 }

 return $sent;
}

 WYDE Billing Guide 35

Sample of Billing Adapter for Microsoft SQL Database (MSSQL)
package Billing::Adapter::MSSQL;

use Misc::Logger;
use Billing::Adapter;
use DBI;
use Misc::Database;
@ISA = ("Billing::Adapter");

sub factory {
 return new Billing::Adapter::MSSQL(@_);
}

sub new {
 my $self = {};
 my $class = shift;
 my $object = bless($self, $class);
 my $database = "dnca_calls";
 my $user = "WydeBillingAdapter";
 my $password = "123";
 my $host = shift;

 $logger->info("Create adapter WINPGSQL : parameters=$host");

 $self->{db} = DBI->connect("dbi:Sybase:server=$host:database=$database", $user,
 $password) || die("Connect: ".DBI::errstr."\n");

 return $object;
}

sub onCDR {
 my $self = shift;
 my $cdrs = shift;
 my $sent = 0;
 my $query;
 my $sth;

 foreach my $cdr (@$cdrs) {
 $query = "INSERT INTO CDRs (CdrDATA) VALUES (?);";
 $sth = $self->{db}->prepare($query);

 my @data_array = ();
 foreach my $k (keys(%$cdr)) {
 push(@data_array, $k."=".$cdr->{$k});
 }
 my $data_str = join(',', @data_array);

 $sth->execute($data_str) || proc_error(DBI::errstr."\nquery: $query\ndata: $data_str\n");
 $sent++;
 }

 return $sent;
}

 WYDE Billing Guide 36

Appendix B: CDR Data Structures

CDR.log File Data Structure
Field Name and Description
Bridge name
Call session identifier
Conference number
Date when the call was created
Connection type, i.e. call direction (In for inbound calls, Out for outbound calls)
Calling number
Called number
Time when the call was created
Time when the call was dropped
Duration of the call in seconds
Who disconnected the call (for instance, USER, BRIDGE)
The reason why the call was disconnected (for instance Normal, Error)
Call flow name
Access code used
Role in the conference (Host, Participant, Listener)
Custom call type (for instance, CONTROLLED, PSTN, RECORDING, VoIP)
Conference identifier
Conference flag – 2 value of this flag determines that this call is the last call in the
conference and the conference was completed when this call ended; otherwise this flag is
empty

 WYDE Billing Guide 37

Local dnca_calls Database calls Table Data Structure and Samples
Field Description Data Samples
id Internal serial identifier of calls table Integer call identifier (counter)
bridge Bridge name WYDE5
node Node name AST1
call_id Call identifier Integer call identifier
connection_type Connection type, i.e. call direction (In for

inbound calls, Out for outbound calls)
In

calling_number Incoming calling number, i.e. the number from
which called the caller or empty

4024684432

called_number Called number, i.e. the number to which the
caller had called

8665080020

addr_to Full address TO, i.e. full qualified SIP URI of
callee’s address

"8665080020" <sip:8665080020
@192.168.1.5>

addr_from Full address FROM, i.e. full qualified SIP URI
of caller’s address

<sip:4024684432@192.168.1.5>

call_created Date and time when the call was created
(started)

2010-11-09 17:39:07+02

call_dropped Date and time when the call was dropped
(ended)

2010-11-09 17:55:12+02

duration Duration of the call in seconds 965
disconnect_who Who disconnected the call (for instance, USER,

BRIDGE)
USER

disconnect_cause Standard Q.931 (ISDN) Disconnect Cause
Codes; see detail description for this field above
in Table 1

16

disconnect_reason The reason why the call was disconnected (for
instance, Normal, Dropped by host,
Incorrect access code, Moved to
other conference. NOANSWER,
CONGESTION, etc.)

Normal

conf_id Conference identifier Integer conference identifier
access_code Access code used 505052
callflow Call flow name (for instance, CONF,

PLAYBACK, OPERATOR, SPECTEL, etc.)
SPECTEL

conf_number Conference number 889900
conf_joined Date and time when the call was joined to the

conference
2010-11-09 17:39:13+02

conf_rejected Date and time when the call was disconnected
from the conference

2010-11-09 17:55:12+02

conf_duration Total duration in seconds of how long the call
was in joined to the conference

959

conf_mode Role in the conference (Host, Participant,
Listener)

Host

custom_name Custom caller name either set from the web or
IVR (PIN) or empty

John Jr.

subscriber_name Name of the subscriber assigned by this call or
empty

John

custom_call_type Custom call type or empty (for instance,
CONTROLLED, PSTN, RECORDING, VoIP,
etc.)

PSTN

 WYDE Billing Guide 38

Field Description Data Samples
audio_key Audio key assigned to this call or empty 690
job_code Active billing (business) code or empty if job

cod was not defined
123

conf_flag Conference flag – 2 value of this flag
determines that this call is the last call in the
conference and the conference was completed
when this call ended; otherwise this flag is
empty

2

 WYDE Billing Guide 39

Local dnca_calls Database conferencedr Table Data Structure and Samples
Field Description Data Samples
conferenceid Conference identifier Integer conference identifier
number Conference number 889900
created Date and time when the conference was created,

i.e. the first caller arrived
2010-11-09 17:36:33+02

closed Date and time when the conference was closed
(ended)

2010-11-09 17:55:12+02

duration Conference duration in seconds, number of
seconds which have elapsed since the
conference was created till the time when it was
terminated

1119

confduration Total duration in seconds of all calls that were
joined to the conference, i.e. sum of all
conference calls durations

1729

recduration Conference recording duration in seconds – 0 (if
there was no recording in the conference) or
total recording duration

252

totalcount Total number of conference calls (0, 1, 2, 3,
etc.)

2

reccount Number of the conference recording – 0 (if
there was no recording in the conference), or 1,
2, 3, etc.

1

modcount Number of hosts (moderators) that were joined
to the conference (0, 1, 2, 3, etc.)

1

cdrid Internal serial identifier of conferencedr table Integer counter

 WYDE Billing Guide 40

Appendix C: Definitions, Acronyms and Abbreviations
While we discussed the WYDE Bridge Billing process in this guide, we used a common set
of terminology. Here we provide the dictionary for the terms you could see throughout this
guide:
x VoIP – Voice over Internet Protocol, a term that refers to the capture/playback of audio

streams and their transmission over IP based networks.
x End Point (EP) – A generic term used to denote the application running on end-user

machines in a VoIP.
x Public Switched Telephone Network (PSTN) – the traditional phone system.
x Bridge – A server that hosts voice conferences. Participants can use PSTN or VoIP

connections to connect to the bridge. It is responsible for mixing the signals and
sending the result back to the participants.

x Gateway – A gateway server between PSTN and VoIP, i.e. a server that terminates end
point connections and routes VoIP data between an end point and the bridge.

x Node – A computer with the asterisk service installed and running. The asterisk is
being installed in Frontend components installation. If you are performing cluster
installation you can have multiple nodes, i.e. multiple asterisk computers in your
WYDE bridge environment.

x Conference User – A user in a conference. Each connection to the conference bridge is
associated with exactly one conference user. An end point can be associated with any
number of conference users. A conference user may or may not be associated with an
end point. The conference user can have one of the roles: host, participant or listener.

x Conference – An audio meeting hosted on a bridge and consisting of PSTN and/or
VoIP participants. A data structure is used to describe ongoing conference on the
bridge. Objects of this type are only created by server. User may fetch these objects by
calling appropriate function. When conference is over the conference object is deleted
by the server.

x Conference Number – A unique external conference number. Conference number is
the property of conference account. If the conference accounts have the same
conference number all these accounts determine one single conference. For instance the
user can create one conference account record that determine host role, another
conference account record that determine participant role, and another conference
account record that determine listener role – all these records should have the same
conference number to determine one unique conference.

x Conference ID – A unique conference ID that represents the instance of a conference.
When any conference is being started it receives unique conference ID, and all calls to
this conference have the same conference ID; if this conference has been completed and
another conference is being started that conference will receive another conference ID.
Conference ID is normally not exposed to users, unless on the reports.

x Session – A data structure represents a single ongoing call on the server. User can not
directly create this object. When the call is over server automatically deletes this object.
Normally this data structure is used to get information about call attributes like
calling/called number etc., or do something with the call, for instance mute, hang, hold
etc.

 WYDE Billing Guide 41

x Session ID – The unique identifier generated by the bridge for each session
(connection, VoIP as well as PSTN) established between a conference user and the
bridge. The session id is unique within a given conference.

x Audio Key – A key sequence that is used to group different calls from the same
conference in a bundle to manage these calls using real-time or another external
interface. Audio key is short identifier generated externally and provided to the bridge
at the time of joining a conference. Audio key is being generated by real-time
application, for instance Moderator-Console, the user can enter the same audio key on
his DTMF keypad, usually as #audio key#, these calls (the call from real-time
application and the user call to the conference) are being grouped together and the real-
time application can manage this user call (the call with the same audio key), for
instance mute the call, etc.

x Distributed Conference – A conference that is taken place on the different bridges
simultaneously. That means that the calls are being made to the different bridges, but
these calls are participating in the same conference.

x Subscriber – A real person, he has a name, phone number, e-mail address, etc. The
subscriber can have conference accounts, he does not have access codes, but access
codes are properties of conference accounts that have subscribers. Note that non-admin
(non-operator) subscribers can see only “own” information, i.e. his information and
information that belongs to subscribers created by him, he can see only their calls,
conferences, the reports will show only their data, etc.

x PIN – The login ID for the subscriber (must be unique). It can be used either as login in
Web Administration Interface (in this case it can be either number or alpha-numeric) or
as login for some call flows (in this case must be numeric) for participants
authorization.

x Conference Account – The element of subscriber conferences configuration.
Conference accounts always belong to subscriber. It is being used to define a person in
a conference with a particular role (e.g. host, participant, listener, etc.), the DNIS
number that should be used to call to the conference, and the access code that should be
entered by the user that called to the conference DNIS to determine his role. A
subscriber could be a host user in one conference and a listener in another. Conference
accounts with the same conference number represent single conference setup.

x Call Flow – A unique conference service setup, the logic that is used to process the
conference calls. This is the process a call goes through from call setup to, to
processing, to call tear down. It includes the logic, DTMF key-presses used, functions,
and the recorded prompts. There are two basic call flow categories: call flows without
authentication and call flows with authentication.

x Attribute – In terms of WYDE web services API, a data structure is used to carry
attributes for call flow, DNIS and conference account (user). The attributes skeleton is
defined by call flow; other attributes can only override some of them, so for instance
when a user called in to the conference DNIS it gets attributes exposed by the call flow,
but some of these attributes can be already altered by the DNIS. Each attribute has
name, type, value, and role.

x DNIS – A unique set of numbers that is outpulsed by a phone carrier that indicates the
intended destination for a particular call. It can be any length digits (although usually 10

 WYDE Billing Guide 42

digits). DNIS is the property of the conference account, but different DNIS numbers
can be used to connect to the same conference.

x Access Code – A numeric code unique for DNIS that allows a host or participant or
listener access to a conference call. When users call to DNIS number they being asked
to enter their access code. The access code determines the conference and the user role
in the conference. Different access codes can determine the same conference, for
instance one access code can determine the connected user has host role, another access
code can determine that connected user has participant role, and another access code
can determine that connected user has listener role.

x Host – A user in the conference call that can make changes to the system while the
conference call is in progress. Like change the security setting, change who can talk or
answer, etc. Sometimes the host user is called moderator. This user role is defined in
conference account. This is the most privileged role in a conference. By default,
connections in this role can send and receive RTP data (i.e. the corresponding
participant is allowed to speak and listen). They also are allowed to execute control
actions on all connections and roles.

x Participant – A person in the conference who can actively participate in a call by both
talking and listening. This user role is defined in conference account. Connections in
this role must be allowed to send and receive RTP data by default. They can execute
mute and un-mute commands on their own connections (associated with the same audio
key); but not on other connections. They are allowed to drop connections within the
same bundle (except where the audio key = 0).

x Listener – A person in the conference who can hear the conference call, but cannot
speak. Their audio path is one way only (receive). This user role is defined in
conference account. Connections in this role must not have the privilege to speak. They
are allowed to send RTP packets to provide feedback for bandwidth adaptively on the
stream sent by the bridge. They are allowed to drop connections that are within the
same bundle (except where the audio key = 0). Note: users in listener role can be un-
muted to enable them to talk; however, the listener group as a whole will never be un-
muted.

x Billing Adapter – A component (function) responsible for storing billing, i.e. CDR
information. Billing adapter processes information from the file created by MF service;
in this file MF keeps information about completed calls; billing adapter receives this
information, transforms it into required format and stores it in required data carrier.

x Billing Rule – A rule that is used to determine the specific billing adapters that are used
to save CDR information. The billing rule could be defined either on call flow level or
on DNIS level.

 WYDE Billing Guide 43

Appendix D: Support Resources
If you have difficulty with this guide and any of the procedures listed herein, please contact
us using the following support resources.

Support Documentation
In addition to this Guide, you may obtain other WYDE Voice documentation from WYDE
Voice or from the WYDE Voice documentation Web site: http://docs.wydevoice.com/.

Web Support
Our support website is available 24 hours a day, 7 days a week, and 365 days a year at
http://www.wydevoice.com. You may download patches, support documentation and other
technical support information.

Telephone Support
For difficulties with any procedures described in this Guide, please contact us at 866-508-
9020 during our normal phone support hours of 7:00 am to 6:00 pm Pacific Standard Time
(PST). An engineer will respond to your inquiry within 24 hours.

Email Support
You may also email us your questions at support@wydevoice.com. We will respond to
your question within 24 hours.

http://docs.wydevoice.com/
http://www.wydevoice.com/
mailto:support@wydevoice.com

	Tables List
	Figures List
	Chapter 1: Introduction
	Section 1.1: Billing Overview
	Section 1.2: Assumed Skills
	Section 1.3: Architecture Overview
	Section 1.4: Integration Adapters
	Section 1.5: Internal Reporting
	Chapter 2: Billing
	Section 2.1: CDR Format
	Section 2.2: Standard Billing Adapters and Rules
	Section 2.3: Billing Integration
	Section 2.4: Custom Billing Adapters and Rules
	Section 2.5: WYDE Commands to Manage Billing Adapters and Rules
	Add a Billing Adapter
	Delete a Billing Adapter
	Modify a Billing Adapter
	View Billing Adapters
	Add a Billing Rule
	Delete a Billing Rule
	Modify a Billing Rule
	View Billing Rules
	Billing Configurations Reloading

	Chapter 3: Samples of Billing Adapters
	Section 3.1: Sample of Calls Billing Adapter to Text File
	Sample of WYDE Bridge Configuration for Calls Text File Billing Adapter

	Section 3.2: Sample of Conferences Billing Adapter to Text File
	Sample of WYDE Bridge Configuration for Conferences Text File Billing Adapter

	Section 3.3: Sample of Billing Adapter to Windows PostgreSQL Database
	PostgreSQL Database Access Configuration Sample
	Sample of WYDE Bridge Configuration for PostgreSQL Billing Adapter

	Section 3.4: Sample of Billing Adapter to Windows Microsoft SQL Database
	Microsoft SQL Server Installation and Configuration Sample
	Microsoft SQL Database Access Configuration Sample
	Sample of WYDE Bridge Configuration for Microsoft SQL Billing Adapter

	Chapter 4: wyde Billing Command Reference
	billing-adapter-add (Add Billing Adapter)
	billing-adapter-del (Delete Billing Adapter)
	billing-adapter-set (Set Billing Adapter Properties)
	billing-adapter-show (Show Billing Adapters)
	billing-reload (Reload Billing Configuration)
	billing-rule-add (Add Billing Rule)
	billing-rule-del (Delete Billing Rule)
	billing-rule-set (Set Billing Rule)
	billing-rule-show (Show Billing Rules)

	Appendix A: Billing Adapters Code Samples
	Billing Adapter Base Class (Adapter.pm)
	Sample of Calls Billing Adapter for Text File (TEXTCSV)
	Sample of Conferences Billing Adapter for Text File (TEXTCONF)
	Sample of Billing Adapter for Windows PostgreSQL Database (WINPGSQL)
	Sample of Billing Adapter for Microsoft SQL Database (MSSQL)

	Appendix B: CDR Data Structures
	CDR.log File Data Structure
	Local dnca_calls Database calls Table Data Structure and Samples
	Local dnca_calls Database conferencedr Table Data Structure and Samples

	Appendix C: Definitions, Acronyms and Abbreviations
	Appendix D: Support Resources
	Support Documentation
	Web Support
	Telephone Support
	Email Support

